Objective. To observe the impact of quercetin and isoquercitrin on gluconeogenesis in hepatocytes. Methods. Mouse primary hepatocytes were cultured with lactic acid and pyruvic acid. After treatment with quercetin and isoquercitrin for 24 hours, the glucose concentration in the culture supernatant was determined. RT-PCR was used to detect the mRNAs of PEPCK, G6Pase, LKB1, and AMPKα. Protein levels of LKB1, AMPKα, and Thr172 phosphorylation were evaluated by Western blot. Results. The glucose concentration in the gluconeogenesis group (GN) was significantly higher than in the control group (C), but the glucose concentrations in the high level quercetin(group 80Q) and high level isoquercitrin (group 80I) were significantly lower than in the group GN, P<0.01. In the group 80Q, and group 80I, the mRNA levels of PEPCK and LKB1were significantly lower than in the group GN (P<0.01), and the G6Pase mRNA were significantly lower than in the group GN (P<0.05). The protein levels of LKB1 and the phosphorylation of AMPKα Thr172 in the group 80Q, group 40I, and group 80I were higher than in the group GN. The effects of quercetin and isoquercitrin on LKB1 and AMPKα were similar to those of metformin. Conclusions. Quercetin and isoquercitrin inhibit gluconeogenesis in hepatocytes, which may be related to the LKB1 upregulation and phosphorylation of AMPKα.