This current work using solution-casting preparation method to create flexible polymer composite materials including titanium dioxide (TiO2) and polyvinyl alcohol (PVA). Then, using a wide beam homemade cold cathode ion generator the samples were irradiated by oxygen fluence of 4x1016, 8x1016, and 12x1016 ions.cm−2. Using EDX, contact angle and XRD techniques, the PVA/TiO2 composite film successful production was evaluated. The effects of ion exposure on the optical behavior are reported using UV-Vis technique. The PVA/TiO2 dispersion energy is 1.75 eV, increased to 2.21 eV, 2.66 eV, and 3.12 eV by irradiation of 4x1016, 8x1016, and 12x1016 ions.cm−2. Moreover, the refractive index (n0) of the PVA/TiO2 is 1.18 increased to 1.25, 1.32, and 1.40 respectively. Moreover, the oscillation energy E0 reduced from 4.24 eV for the PVA/TiO2 composite to 3.84 eV, 3.64 eV, and 3.27 eV, respectively. Thus, the changes in the optical and structural alterations in PVA/TiO2 films by ion irradiation, is employ for directed the treated PVA/TiO2 materials in various optoelectronic.