Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by diverse serological autoantibodies. Anti-dsDNA antibodies are involved in multiple organ damage, especially the kidney, skin, and central nervous system. Anti-dsDNA antibodies play a pivotal role in SLE, and researchers have developed therapeutic strategies targeting these antibodies. Approaches to reduce anti-dsDNA antibodies via B cell targeted biologics against B cell surface antigens, B cell survival factors, or Bruton’s tyrosine kinase have effectively eliminated B cells. However, their non-specific depletion hampers normal immune system functioning and limits the therapeutic benefits. Thus, scientists have attempted anti-dsDNA antibodies or lupus-specific strategies, such as the immature dendritic cell vaccine and immunoadsorption. Recently, synthetic mimic peptides (hCDR1, pCONs, DWEYS, FISLE-412, and ALW) that directly block anti-dsDNA autoantibodies have attracted attention, which could ameliorate lupus, decrease the serological autoantibody titer, reduce the deposition of renal autoantibodies, and improve pathological performance. These potent small peptide molecules are well tolerated, non-toxic, and non-immunogenic, which have demonstrated a benign safety profile and are expected to be hopeful candidates for SLE management. In this review, we clarify the role of anti-dsDNA antibodies in SLE, mainly focus on the current strategies targeting anti-dsDNA antibodies, and discuss their potential clinical value.