The pharmacokinetics (PK) of drugs are known to be significantly altered in patients receiving extracorporeal membrane oxygenation (ECMO). However, clinical studies of the PK of drugs administered during ECMO are scarce, and the proper dosing adjustment has yet to be established. We developed a population PK model for teicoplanin, investigated covariates influencing teicoplanin exposure, and suggested an optimal dosing regimen for ECMO patients. Samples for PK analysis were collected from 10 adult patients, and a population PK analysis and simulations were performed to identify an optimal teicoplanin dose needed to provide a Ͼ50% probability of target attainment at 72 h using a trough concentration target of Ͼ10 g/ml for mild to moderate infections and a trough concentration target of Ͼ15 g/ml for severe infections. Teicoplanin was well described by a two-compartment PK model with first-order elimination. The presence of ECMO was associated with a lower central volume of distribution, and continuous renal replacement therapy (CRRT) was associated with a higher peripheral volume of distribution. For mild to moderate infections, an optimal dose was a loading dose (LD) of 600 mg and a maintenance dose (MD) of 400 mg for ECMO patients not receiving CRRT and an LD of 800 mg and an MD of 600 mg for those receiving CRRT. For severe infections, an optimal dose was an LD of 1,000 mg and an MD of 800 mg for ECMO patients not receiving CRRT and an LD of 1,200 mg and an MD of 1,000 mg for those receiving CRRT. In conclusion, doses higher than the standard doses are needed to achieve fast and appropriate teicoplanin exposure during ECMO. (This study has been registered at ClinicalTrials.gov under identifier NCT02581280.)