Complexes of type [LAuCl] (L = phosphine, phosphite, NHC and others) are widely employed in homogeneous catalysis, however, they are usually inactive as such and must be used jointly with a halide scavenger. To date, this role has mostly been entrusted to silver salts (AgSbF6 , AgPF6, AgBF4, AgOTf, etc.). However, silver salts can be the source of deactivation processes or side reactions, so it is sometimes advisable to use silver-free cationic gold complexes, which can be difficult to synthesize and to handle compared with the more robust chloride. We show in this study that various Lewis acids of the transition and main group metal families are expedient substitutes to silver salts. We have tested Cu(I), Cu(II), Zn(II), In(III), Si(IV), Bi(III), and other salts in a variety of typical Au(I)-catalyzed transformations, and the results have revealed that [LAuCl] can form active species in their presence.