ABSTRACTregions, which thereby supplants the necessity for ALA formation via the ALA synthase route.8-Aminolevulinic acid (ALA), a key precursor of the tetrapyrroles heme and chlorophyll, is capable of being synthesized by two different routes in cells of the unicellular green alga Euglena gracilis: from the intact carbon skeleton of glutamate, and via the condensation of glycine and succinyl CoA, mediated by the enzyme ALA synthase. The regulatory properties of ALA synthase were examined in order to establish its role in Euglena.Partially purified Euglena ALA synthase, unlike the case with the bacterial or animal-derived enzyme, does not exhibit allosteric inhibition by the tetrapyrrole pathway products heme, protoporphyrin IX, and porphobilinogen, at concentrations up to 100 micromolar.In aplastidic mutant cells, extractable ALA synthase activity is constant during exponential growth, and decreases to low levels as the cells reach the stationary state. Rapid exponential decline of ALA synthase (t1/2 = 55 min) occurs after administration of 43 micromolar cycloheximide, but not 6.2 millimolar chloramphenicol. These results suggest that, as in other eukaryotic cells, ALA synthase is synthesized on cytoplasmic ribosomes and is subject to rapid turnover in vivo.Extractable ALA synthase activity increases 2.5-fold within 6 hours after administration of 100 millimolar ethanol, a stimulator of mitochondrial development, and 4.5-fold within 12 hours after administration of I millimolar 4,6-dioxoheptanoic acid, which blocks ALA utilization, suggesting that activity is controlled in vivo by a feedback induction-repression mechanism, coupled with rapid enzyme turnover.In heterotrophically grown wild-type cells, low levels of ALA synthase rapidly increase 4.5-fold within 12 hours after cells are transferred from the light to the dark, and decrease exponentially (t1/2 = 75 min) when cells are transferred from the dark to light. The dark levels are equal to those in light-or dark-grown aplastidic mutant cells. The low level occurring in light-grown wild-type cells is not altered by the presence of 10 micromolar 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which blocks photosynthetic 02 production. The decrease that occurs on dark-to-light transfer can be diminished by 12-or 24-hour prior incubation with 6.2 millimolar chloramphenicol, which also retards chlorophyll synthesis after the transfer to light.The positive relationship of ALA synthase activity to degree of mitochondrial expression, and the inverse relationship to plastid development and chlorophyll synthesis, suggests that ALA synthase functions to provide precursors to nonplastid tetrapyrroles in Euglena. In light-grown, wild-type cells, the diminished levels of ALA synthase may be due to the ability of developing plastids to export heme or a heme precursor to other cellular '