We present final Spitzer trigonometric parallaxes for 361 L, T, and Y dwarfs. We combine these with prior studies to build a list of 525 known L, T, and Y dwarfs within 20 pc of the Sun, 38 of which are presented here for the first time. Using published photometry and spectroscopy as well as our own follow-up, we present an array of colormagnitude and color-color diagrams to further characterize census members, and we provide polynomial fits to the bulk trends. Using these characterizations, we assign each object a T eff value and judge sample completeness over bins of T eff and spectral type. Except for types T8 and T eff < 600 K, our census is statistically complete to the 20 pc limit. We compare our measured space densities to simulated density distributions and find that the best fit is a power law ( µ a -dN dM M ) with α = 0.6 ± 0.1. We find that the evolutionary models of Saumon & Marley correctly predict the observed magnitude of the space density spike seen at 1200 K < T eff < 1350 K, believed to be caused by an increase in the cooling timescale across the L/T transition. Defining the low-mass terminus using this sample requires a more statistically robust and complete sample of dwarfs Y0.5 and with T eff < 400 K. We