Abstract. In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Λ. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called "ΛXCDM models") in which the DE fluid can be a mixture of a running Λ and another dynamical entity X (the "cosmon") which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, ω e , of this composite fluid and show that the ΛXCDM can mimic to a large extent the standard ΛCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary ω e = −1). We further argue that the ΛXCDM models can cure the cosmological coincidence problem. All in all we suggest that future experimental studies on precision cosmology should take seriously the possibility that the DE fluid can be a composite medium whose dynamical features are partially caused and renormalized by the quantum running of the cosmological parameters.