Aromaticity, an old but still fantastic topic, has long attracted considerable interest of chemists. Generally, π aromaticity is described by π-electron delocalization in closed circuits of unsaturated compounds whereas σ-electron delocalization in saturated rings leads to σ aromaticity. Interestingly, our recent study shows that σ aromaticity can be dominating in an unsaturated three-membered ring (3MR) of cyclopropaosmapentalene. An interesting question is raised: Can the σ aromaticity, which is dominant in the unsaturated 3MR, be extended to other cyclopropametallapentalenes? If so, how could the metal centers, ligands, and substituents affect the σ aromaticity? Here, we report a thorough theoretical study on these issues. The nucleus-independent chemical shift calculations and the anisotropy of the current-induced density plots reveal the dominant σ aromaticity in these unsaturated 3MRs. In addition, our calculations show that substituents on the 3MRs have significant effects on the σ aromaticity, whereas the ligand effect is particularly small.