Работа посвящена развитию аппарата $s$-мерно непрерывных функций, необходимого для применения в задаче Дирихле для эллиптического уравнения. Это обобщение пространства непрерывных функций позволило расширить понятия классического и обобщенного решений задачи Дирихле. Изучается связь этих пространств $s$-мерно непрерывных функций с другими известными функциональными пространствами. Это исследование потребовало нового (как нам кажется, более удачного и близкого к классическому) построения $s$-мерно непрерывных функций, которое в свою очередь привело к получению новых свойств этих пространств. В работе доказаны теоремы вложения пространства $C_{s,p}(\overline Q)$ в $C_{s',p'}(\overline Q)$ с $s'>s$ и $p'>p$, в частности в $ L_q(Q)$. Ранее было установлено вложение $W^1_2(Q)$ в $C_{n-1,2}(\overline Q)$, которое обеспечивает $(n-1)$-мерную непрерывность обобщенных решений; в настоящей работе доказано более общее вложение $W^1_r(Q)$ в $C_{s,p}(\overline Q)$ и подтверждена точность показателей в этих вложениях.
Библиография: 33 названия.