Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of synthetic and natural resins in the fixation of organic-mineral matter for further studies is common, e.g. in the micromorphological study of soils, since the procedure of making thin sections includes the impregnation of the sample with aggregates. At the same time, their effect on the soil structure has not been known until now. In this article, an experiment to study the effect of synthetic and natural resins on the nano-and microstructure of soil during impregnation is set up for the first time. Using small-angle X-ray scattering and computed tomography techniques, the first data are obtained on the characteristics of resins frequently used in laboratories, as well as on their effects on the structure of soil samples. The X-ray “transparency” of fixing materials was detected. Subsequent impregnation of AU horizon fraction from Haplic Chernozems of Kursk region by them allowed to establish the influence of epoxy resin on the change of size of nanostructural heterogeneities of soil. The experiment with different horizons of Protosalic Solonetz allowed to establish an increase in the size of nanoheterogeneities with depth in the trend of native soil in relation to the trend of impregnated soil. At the micro level, a decrease in microporosity within the first per cent after polymerisation of the curing agent was proved. The nanostructure of soil monoliths and separate fractions were investigated for the first time at this station. The above results can be used in sample preparation and further analysis of organic-mineral objects (soil, rock, ground) for a number of studies that require fixation of the substance structure at different dimensional levels.
The use of synthetic and natural resins in the fixation of organic-mineral matter for further studies is common, e.g. in the micromorphological study of soils, since the procedure of making thin sections includes the impregnation of the sample with aggregates. At the same time, their effect on the soil structure has not been known until now. In this article, an experiment to study the effect of synthetic and natural resins on the nano-and microstructure of soil during impregnation is set up for the first time. Using small-angle X-ray scattering and computed tomography techniques, the first data are obtained on the characteristics of resins frequently used in laboratories, as well as on their effects on the structure of soil samples. The X-ray “transparency” of fixing materials was detected. Subsequent impregnation of AU horizon fraction from Haplic Chernozems of Kursk region by them allowed to establish the influence of epoxy resin on the change of size of nanostructural heterogeneities of soil. The experiment with different horizons of Protosalic Solonetz allowed to establish an increase in the size of nanoheterogeneities with depth in the trend of native soil in relation to the trend of impregnated soil. At the micro level, a decrease in microporosity within the first per cent after polymerisation of the curing agent was proved. The nanostructure of soil monoliths and separate fractions were investigated for the first time at this station. The above results can be used in sample preparation and further analysis of organic-mineral objects (soil, rock, ground) for a number of studies that require fixation of the substance structure at different dimensional levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.