Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article contains a survey of a new algebro-geometric approach for working with iterated algebraic loop groups associated with iterated Laurent series over arbitrary commutative rings and its applications to the study of the higher-dimensional Contou-Carrère symbol. In addition to the survey, the article also contains new results related to this symbol. The higher-dimensional Contou-Carrère symbol arises naturally when one considers deformation of a flag of algebraic subvarieties of an algebraic variety. The non-triviality of the problem is due to the fact that, in the case , for the group of invertible elements of the algebra of -iterated Laurent series over a ring, no representation is known in the form of an ind-flat scheme over this ring. Therefore, essentially new algebro-geometric constructions, notions, and methods are required. As an application of the new methods used, a description of continuous homomorphisms between algebras of iterated Laurent series over a ring is given, and an invertibility criterion for such endomorphisms is found. It is shown that the higher- dimensional Contou-Carrère symbol, restricted to algebras over the field of rational numbers, is given by a natural explicit formula, and this symbol extends uniquely to all rings. An explicit formula is also given for the higher-dimensional Contou-Carrère symbol in the case of all rings. The connection with higher-dimensional class field theory is described. As a new result, it is shown that the higher-dimensional Contou-Carrère symbol has a universal property. Namely, if one fixes a torsion-free ring and considers a flat group scheme over this ring such that any two points of the scheme are contained in an affine open subset, then after restricting to algebras over the fixed ring, all morphisms from the -iterated algebraic loop group of the Milnor -group of degree to the above group scheme factor through the higher-dimensional Contou-Carrère symbol. Bibliography: 67 titles.
This article contains a survey of a new algebro-geometric approach for working with iterated algebraic loop groups associated with iterated Laurent series over arbitrary commutative rings and its applications to the study of the higher-dimensional Contou-Carrère symbol. In addition to the survey, the article also contains new results related to this symbol. The higher-dimensional Contou-Carrère symbol arises naturally when one considers deformation of a flag of algebraic subvarieties of an algebraic variety. The non-triviality of the problem is due to the fact that, in the case , for the group of invertible elements of the algebra of -iterated Laurent series over a ring, no representation is known in the form of an ind-flat scheme over this ring. Therefore, essentially new algebro-geometric constructions, notions, and methods are required. As an application of the new methods used, a description of continuous homomorphisms between algebras of iterated Laurent series over a ring is given, and an invertibility criterion for such endomorphisms is found. It is shown that the higher- dimensional Contou-Carrère symbol, restricted to algebras over the field of rational numbers, is given by a natural explicit formula, and this symbol extends uniquely to all rings. An explicit formula is also given for the higher-dimensional Contou-Carrère symbol in the case of all rings. The connection with higher-dimensional class field theory is described. As a new result, it is shown that the higher-dimensional Contou-Carrère symbol has a universal property. Namely, if one fixes a torsion-free ring and considers a flat group scheme over this ring such that any two points of the scheme are contained in an affine open subset, then after restricting to algebras over the fixed ring, all morphisms from the -iterated algebraic loop group of the Milnor -group of degree to the above group scheme factor through the higher-dimensional Contou-Carrère symbol. Bibliography: 67 titles.
We calculate explicitly an adelic quotient group for an excellent Noetherian normal integral two-dimensional separated scheme. An application to an irreducible normal projective algebraic surface over a field is given.Recently there were also found the interesting connections and interactions with many questions between the higher adeles theory and the Langlands program, see [16].As an application, we deduce from our calculations of adelic quotient group (2) the corresponding quotient group when X is a projective irreducible normal surface over a field k , and C is the support of an ample divisor. As in the one-dimensional case, this quotient group will be a linearly compact k -vector space. We note that this quotient group when the surface X is smooth and the sheaf F = O X was calculated in [12, § 14].
В статье дан обзор нового алгебро-геометрического подхода к работе с итерированными алгебраическими группами петель, связанными с итерированными рядами Лорана над произвольными коммутативными кольцами, и его приложений к исследованию многомерного символа Конту-Каррера. Помимо обзора в статье приводятся новые результаты, связанные с этим символом. Многомерный символ Конту-Каррера естественно возникает при рассмотрении деформации флага алгебраических подмногообразий в алгебраическом многообразии. Нетривиальность задачи обусловлена тем, что при $n>1$ для группы обратимых элементов алгебры $n$-итерированных рядов Лорана над кольцом не известно представление в виде инд-плоской схемы над этим кольцом и требуются принципиально новые алгебро-геометрические конструкции, понятия и методы. В качестве приложения используемых новых методов приведено описание непрерывных гомоморфизмов между алгебрами итерированных рядов Лорана над кольцом, найден критерий обратимости для таких эндоморфизмов. Доказано, что многомерный символ Конту-Каррера, ограниченный на алгебры над полем рациональных чисел, задается естественной явной формулой и однозначно продолжается на все кольца. Приведена явная формула для многомерного символа Конту-Каррера в случае всех колец. Описана связь с многомерной теорией полей классов. В качестве нового результата доказано, что для многомерного символа Конту-Каррера выполнено универсальное свойство: после ограничения на алгебры над фиксированным кольцом без кручения через него пропускаются все морфизмы из $n$-итерированной алгебраической группы петель от $K$-группы Милнора степени $n+1$ в плоские групповые схемы над этим кольцом, в которых любые две точки содержатся в аффинном открытом подмножестве. Библиография: 67 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.