Background. Recent studies show that cardiovascular diseases, including coronary heart disease, are the leading causes of death and one of the main factors of disability worldwide. The detection of cases of this type of disease over the past 30 years has increased from 271 million to 523 million and the number of deaths – from 12.1 million to 18.6 million. Cardiovascular diseases are the main cause of death among the population of Ukraine and, according to this indicator, the country remains one of the world leaders. Coronary heart disease is the leading factor in the loss of health in Ukraine and modern diagnostic methods, including machine learning algorithms, are increasingly being used for timely detection.
Objective. According to the data of speckle-tracking echocardiography using the random forest method, construct classification algorithms for diagnosing violations of the kinematics of left ventricular contractions in patients with coronary heart disease at rest, and when using an echostress test with a dobutamine test.
Methods. Speckle-tracking echocardiography was used to examine 40 patients with coronary heart disease and 16 in whom no cardiac pathology was found. Echocardiography was recorded in B mode in three positions: along the long axis, in 4-chamber, and 2-chamber positions. In total, 6245 frames of the video stream were used: 1871 – without cardiac abnormalities, and 4374 – in the presence of pathology during the examination. 56 patients (2509 frames of video data) were examined without the use of a dobutamine test and 38 patients (3736 frames of video data) – using an echostress test with a dobutamine test if no disturbances were found at rest. Dobutamine doses of 10, 20, and 40 mcg were administered under the supervision of an anesthesiologist. The data of texture analysis of images were used as informative features. To build an algorithm for detecting coronary heart disease the random forest algorithm was applied.
Results. At the first stage of the study, the diagnostic algorithms norma–pathology for the state of rest and dobutamine doses of 10, 20, and 40 mcg were constructed. Before applying the algorithm the samples were randomly divided into training (70%) and test (30%). The classifiers were evaluated for accuracy, sensitivity, and specificity. According to the test samples, the accuracy of diagnostic conclusions varied from 97 to 99%. At the second stage of the study, to increase the versatility of the models, the classifier was built for all images, without dividing them into dobutamine doses. The accuracy for the test samples also ranged from 96.6 to 97.8%. To construct diagnostic algorithms by the random forest method the data of texture analysis of images were used.
Conclusions. High-precision classification models were obtained using the random forest algorithm. The developed models can be applied to the analysis of echocardiograms obtained in B mode on equipment that is not equipped with the speckle tracking technology.