Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Dispersion of spin waves in the amorphous ferromagnetic alloy Fe48Ni34P18 can be described within the model of a ferromagnet with random anisotropy: @(q) = Aq2 + gμBH + δω(q), where δω(q) is an additional term linear in |q|. The method of small-angle scattering of polarized neutrons is used to prove the importance of the additional term δω(q) in dispersion. The measurements are carried out for different values of the external magnetic field H and neutron wavelength λ. The scattering map of neutrons represents a circle centered at the point q = 0. The stiffness A of spin waves is derived directly from the λ-dependence of the radius of this circle. The spin-wave stiffness A of the amorphous alloy weakly decreases from 140 to 110 meV Å2 as temperature increases from 50 to 300 K. The field dependence of the radius demonstrates the presence of an additional term δω(q) in the form of an energy gap that is almost independent of field and temperature. The value of the additional term is Δ = 0.015 ± 0.002 meV.
Dispersion of spin waves in the amorphous ferromagnetic alloy Fe48Ni34P18 can be described within the model of a ferromagnet with random anisotropy: @(q) = Aq2 + gμBH + δω(q), where δω(q) is an additional term linear in |q|. The method of small-angle scattering of polarized neutrons is used to prove the importance of the additional term δω(q) in dispersion. The measurements are carried out for different values of the external magnetic field H and neutron wavelength λ. The scattering map of neutrons represents a circle centered at the point q = 0. The stiffness A of spin waves is derived directly from the λ-dependence of the radius of this circle. The spin-wave stiffness A of the amorphous alloy weakly decreases from 140 to 110 meV Å2 as temperature increases from 50 to 300 K. The field dependence of the radius demonstrates the presence of an additional term δω(q) in the form of an energy gap that is almost independent of field and temperature. The value of the additional term is Δ = 0.015 ± 0.002 meV.
The magnetic-field dependence of the superparamagnetic-blocking temperature TB of systems of antiferromagnetically ordered ferrihydrite nanoparticles has been investigated and analyzed. We studied two powder systems of nanoparticles: particles of “biogenic” ferrihydrite (with an average size of 2.7 nm), released as a result of vital functions of bacteria and coated with a thin organic shell, and particles of biogenic ferrihydrite subjected to low-temperature annealing, which cause an increase in the average particle size (to 3.8 nm) and burning out of the organic shell. The character of the temperature dependences of magnetization, measured after cooling in a weak field, as well as the shape of the obtained dependences TB(H), demonstrate peculiar features, indicating the influence of magnetic interparticle interactions. A detailed analysis of the dependences TB(H) within the random magnetic anisotropy model made it possible to estimate quantitatively the intensity of magnetic particle–particle interactions and determine the magnetic anisotropy constants of individual ferrihydrite particles.
The paper states that the known algorithms for generating and constructing fractal sets can be significantly expanded through the family of new algorithms proposed by the authors. These algorithms are based on modelling the attractors of motion of a material point in the field N of central forces in a discrete formulation. When only one of these forces is accidentally switched on at any given time, the point attractor has a strictly fractal structure. It is shown that the perturbation of one or more of the N central forces leads to a change in the structure of the attractor. Thus, the areas of the attractor Dp , controlled by the perturbed forces, with an increase in the perturbation radius, evolve to the perturbation trajectory. For biharmonic perturbations, it is shown that these subsets belong to the inner region of the 2n–point. It has been established that for small values of the perturbation radius R the parameter n → ∞, and for large values of R the parameter n → 1. For the field of central forces in the form of matrices 2*2; 3*3; 5*5 the quantitative models n(2R/B; m) are constructed and their close correlation with the perturbation parameter R, the size of the side B of the square matrix of the field of central forces and the “gravitational” parameter m is shown. It is shown that the gnoseology of the proposed algorithms originates from the wellknown algorithm of M. Barnsley, but the physical and software components are significantly improved and developed. The proposed family of algorithms allows to expand the possibilities of generating original (exclusive) fractal sets up to ~ 1040… 1050 pieces. At the same time, it is possible to control the fractal dimension, porosity, specific gravity, aerodynamic and hydraulic resistance, noise, sound and thermal insulation properties, colour of individual subregions, etc. in a wide range of values. It is shown that a significant part of such fractal sets, especially those with a high degree of symmetry, can be useful for solving problems in the field of design, ergonomics and aesthetics, for decorating buildings, clothing, footwear, haberdashery, toys, as well as for creating puzzles, IQ-tests, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.