Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction. The paper is devoted to the study on free oscillations of the sensing element of a micromechanical R-Rtype gyroscope of frame construction developed by the Kuznetsov Research Institute of Applied Mechanics, taking into account the nonorthogonality of the torsion axes. The influence of the instrumental manufacturing error on the accuracy of a gyroscope on a movable base in the case of free oscillations is studied. The work objective was to improve the device accuracy through developing a mathematical model of an R-R type micromechanical gyroscope, taking into account the nonorthogonality of the torsion axes, and to study the influence of this error on the device accuracy. The urgency of the problem of increasing the accuracy of micromechanical gyroscopes is associated with improving the accuracy of inertial navigation systems based on micromechanical sensors.Materials and Methods. A new mathematical model that describes the gyroscope dynamics, taking into account the instrumental error of manufacturing the device, and a formula for estimating the error of a gyroscope, are proposed. The dependences of the state variables obtained from the results of modeling and on the basis of the experiment are presented. Methods of theoretical mechanics and asymptotic methods, including the Lagrange formalism and the Krylov-Bogolyubov averaging method, were used in the research.Results. A new mathematical model of the gyroscope dynamics, taking into account the nonorthogonality of the torsion axes, is developed. The solution to the equations of small oscillations of the gyroscope sensing element and the estimate of the precession angle for the case of a movable base are obtained. A comparative analysis of the developed model and the experimental data obtained in the case of free oscillations of the gyroscope sensing element with a fixed base is carried out. The analysis has confirmed the adequacy of the constructed mathematical model. Analytical expressions are formed. They demonstrate the fact that the nonorthogonality of the torsion axes causes a cross-influence of the amplitudes of the primary vibrations on the amplitudes of the secondary vibrations of the sensing element, and the appearance of an additional error in the angular velocity readings when the gyroscope is operating in free mode.Discussion and Conclusions. The results obtained can be used to improve the device accuracy using the algorithm for analytical compensation of the gyroscope error and the method for identifying the mathematical model parameters.
Introduction. The paper is devoted to the study on free oscillations of the sensing element of a micromechanical R-Rtype gyroscope of frame construction developed by the Kuznetsov Research Institute of Applied Mechanics, taking into account the nonorthogonality of the torsion axes. The influence of the instrumental manufacturing error on the accuracy of a gyroscope on a movable base in the case of free oscillations is studied. The work objective was to improve the device accuracy through developing a mathematical model of an R-R type micromechanical gyroscope, taking into account the nonorthogonality of the torsion axes, and to study the influence of this error on the device accuracy. The urgency of the problem of increasing the accuracy of micromechanical gyroscopes is associated with improving the accuracy of inertial navigation systems based on micromechanical sensors.Materials and Methods. A new mathematical model that describes the gyroscope dynamics, taking into account the instrumental error of manufacturing the device, and a formula for estimating the error of a gyroscope, are proposed. The dependences of the state variables obtained from the results of modeling and on the basis of the experiment are presented. Methods of theoretical mechanics and asymptotic methods, including the Lagrange formalism and the Krylov-Bogolyubov averaging method, were used in the research.Results. A new mathematical model of the gyroscope dynamics, taking into account the nonorthogonality of the torsion axes, is developed. The solution to the equations of small oscillations of the gyroscope sensing element and the estimate of the precession angle for the case of a movable base are obtained. A comparative analysis of the developed model and the experimental data obtained in the case of free oscillations of the gyroscope sensing element with a fixed base is carried out. The analysis has confirmed the adequacy of the constructed mathematical model. Analytical expressions are formed. They demonstrate the fact that the nonorthogonality of the torsion axes causes a cross-influence of the amplitudes of the primary vibrations on the amplitudes of the secondary vibrations of the sensing element, and the appearance of an additional error in the angular velocity readings when the gyroscope is operating in free mode.Discussion and Conclusions. The results obtained can be used to improve the device accuracy using the algorithm for analytical compensation of the gyroscope error and the method for identifying the mathematical model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.