2000
DOI: 10.4213/tvp322
|View full text |Cite
|
Sign up to set email alerts
|

Интегро-Локальные Предельные Теоремы Для Сумм Случайных Векторов, Включающие Большие Уклонения. II

Abstract: Настоящая статья является продолжением работ [1], [2]. Пусть S(n) = £(1) + ••• + £(п) есть сумма независимых невырожденных в R d случайных векторов, распределенных как вектор £. Предпо лагается, что функция <р(Х) = Ее' '" конечна в окрестности не которой точки А 6 R d. Получены асимптотические представления для вероятности Р{5(п) € А(ж)} и для функции восстановления Я(Д(ж)) = £Г=1 Р{5(п) € Д(ж)}, где Д(ж) есть куб в R d с верши ной в точке ж и со стороной Д. При этом в отличие от [1], [2] либо по существу ника… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2001
2001
2015
2015

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 3 publications
0
2
0
2
Order By: Relevance
“…Integrating their ap proximation, they could recover Iltis's result, but they focus on the geometry of A when дA is smooth and has a unique point, where the function I reaches its minimum. Borovkov and Mogulskii [14] obtained an integro-local large deviation result under weaker conditions than the above mentioned authors, but with a slight restriction on the sets A to be considered. In a somewhat different vein, Borovkov and Mogulskii [11]- [13] obtained sharp result under very weak assumptions on the distribution and focusing on uniformity with respect to the distribution and the set.…”
Section: N-»oomentioning
confidence: 92%
See 1 more Smart Citation
“…Integrating their ap proximation, they could recover Iltis's result, but they focus on the geometry of A when дA is smooth and has a unique point, where the function I reaches its minimum. Borovkov and Mogulskii [14] obtained an integro-local large deviation result under weaker conditions than the above mentioned authors, but with a slight restriction on the sets A to be considered. In a somewhat different vein, Borovkov and Mogulskii [11]- [13] obtained sharp result under very weak assumptions on the distribution and focusing on uniformity with respect to the distribution and the set.…”
Section: N-»oomentioning
confidence: 92%
“…We shall obtain in what follows some more complete results than Andriani and Baldi [1], which therefore could alternatively be obtained from their main theorems. Notice that Borovkov and Mogulskii [14,Part I] give an expression for P{S n G nA} under a condition weaker than (2.2), namely contains АПЛад +£ . Indeed, the usual rough estimate (1.2) shows that P{S n G nA} ~ P{S n G п(ЛПЛ/(л) +е )} as n tends to infinity.…”
Section: The Main Results and Its Consequencesmentioning
confidence: 99%
“…При выполнении условия [С] функция уклонений играет определя ющую роль при описании вероятностей больших уклонений (в соответ ствующих областях) сумм S(n) = £(1)Н г-£(п), о чем свидетельствует теорема 1.1 (см. ниже, а также [5], [4], [8], [9]).…”
Section: T|-kx>unclassified
“…теоремами для сумм S(n) мы называем (см. [8], [9]) утверждения об асимптотическом поведении при п -> оо вероятности…”
Section: T|-kx>unclassified