An algorithm has been developed for determining the frequency and amplitude of the harmonic components of a weakly nonstationary acoustic signal, which also contains random noise and drift of the constant component. The algorithm was tested on a signal simulating flight of an aircraft over a measurement point. For a model source simulating a the propeller of UAV, the possibility of determining the harmonic amplitudes of a propeller with varying revolutions and under noise interference conditions was demonstrated using the unique scientific installation the TsAGI AC-2 anechoic chamber with flow.