Для изучения переходных процессов в объемных нелинейно деформируемых средах разработаны методы моделирования, основанные на интегральных представлениях трехмерной краевой задачи упругой динамики, численных схемах высокого порядка аппроксимации границ и коллокационного приближения решения. Представлены обобщенные формулировки метода граничных интегральных уравнений, использующие фундаментальные решения статической упругости, уравнения состояния упругопластических сред с анизотропным упрочнением и разностные методы интегрирования по времени. Учитываются сложные истории комбинированного медленно меняющегося во времени и ударного нагружения составных кусочно-однородных сред при наличии зон локального возмущения решения. С использованием разработанного метода дискретных областей получены решения прикладных задач о распространении нелинейных волн напряжений в неоднородных средах. Приведены сравнения с решениями, полученными методом конечных элементов. Они подтверждают вычислительную эффективность разработанных алгоритмов, а также общность и полезность для практических целей предлагаемого подхода.