2020
DOI: 10.46698/h8083-6917-3687-w
|View full text |Cite
|
Sign up to set email alerts
|

Неравенство Бернштейна - Никольского В Весовых Пространствах Лебега

Abstract: In this paper, we give some results concerning Bernstein--Nikol'skii inequality for weighted Lebesgue spaces. The main result is as follows: Let $1 < u,p < \infty$, $0<q+ 1/p <v + 1/u <1,$ $v-q\geq 0$, $\kappa >0$, $f \in L^u_v(\R)$ and $\supp\widehat{f} \subset [-\kappa, \kappa]$. Then $D^mf \in L^p_q(\R)$, $\supp\widehat{D^m f}=\supp\widehat{f}$ and there exists a~constant~$C$ independent of $f$, $m$, $\kappa$ such that $\|D^mf\|_{L^p_{q}} \leq C m^{-\varrho} \kappa^{m+\varrho} \|f\|_{ L… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
(23 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?