Peculiarities of formation and growth of crystals of metal fluorides MF2 (where M — Ca, Sr, Pb) and MF3 (where M — Sc, La, Ln) as a result of interaction between components of an aqueous solution of metal salt and gaseous hydrogen fluoride at planar interface at room temperature are considered. Compounds with different crystal structures: PbF2 (pr. gr. Pnma, Fm3m), ScF3 (pr. gr. Pm3m, P6/mmm), LaF3 (pr. gr. P3c1) were chosen as model objects. The factors that have a significant influence on the morphology, size, and ordering of the formed crystals have been determined. The possibility of synthesis of 1D and 2D crystals is shown for some compounds. Probable fields of application of nanomaterials based on synthesized compounds are analyzed. The conclusion is made about the possibility of the interface technique developing for the design of new solid electrolytes, optically active materials, and functional coatings.