О $p$-невырожденных системах уравнений над разрешимыми группами
Mikhail Alexandrovich Mikheenko
Abstract:Любую группу, обладающую субнормальным рядом, в котором все факторы абелевы и все, за исключением последнего, не имеют $p'$-кручения, можно вложить в группу с субнормальным рядом такой же длины и с такими же свойствами такую, что любая $p$-невырожденная система уравнений над этой группой разрешима в самой этой группе. Это позволяет доказать, что минимальный порядок метабелевой группы, над которой есть унимодулярное уравнение, не разрешимое в метабелевых группах, равен $42$.
Библиография: 14 названий.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.