2024
DOI: 10.4213/sm10009
|View full text |Cite
|
Sign up to set email alerts
|

О $p$-невырожденных системах уравнений над разрешимыми группами

Mikhail Alexandrovich Mikheenko

Abstract: Любую группу, обладающую субнормальным рядом, в котором все факторы абелевы и все, за исключением последнего, не имеют $p'$-кручения, можно вложить в группу с субнормальным рядом такой же длины и с такими же свойствами такую, что любая $p$-невырожденная система уравнений над этой группой разрешима в самой этой группе. Это позволяет доказать, что минимальный порядок метабелевой группы, над которой есть унимодулярное уравнение, не разрешимое в метабелевых группах, равен $42$. Библиография: 14 названий.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?