В рамках уравнений Навье-Стокса рассматривается течение вязкой несжимаемой жидкости между неподвижными параллельными проницаемыми стенками, на которых выставляется условие равенства нулю только продольной компоненты скорости. Ищутся решения, в которых поперечная к плоскости пластин компонента скорости постоянна. Получены как стационарные, так и нестационарные решения, среди которых есть нетривиальное решение с постоянным давлением и экспоненциально затухающей со временем продольной скоростью. Устанавливается, что для стационарных течений вынос погранслоя в глубь течения от одной пластины при одновременном всасывании погранслоя на другой пластине приводит к росту сопротивления по сравнению с классическим течением Пуазейля. В случае непроницаемых стенок получено точное нестационарное решение, профиль скорости которого в фиксированные моменты времени отличается от профиля в классическом течении Пуазейля и в пределе (при стремлении времени к бесконечности) соответствует покою.