The purpose of the study is to reveal the biogeochemical features of soils (illuvial-ferruginous podzols, podzols, cryozems, oligotrophic peat frozen soils, alluvial gray-humus and lacustrine-alluvial soils) and vegetation (Betula nana L., Chamaedaphne calyculata (L.) Moench, Vaccinium uliginosum L., Ledum palustre L., Sphagnum sp L.) of the Nadym region. To achieve the goal, the following tasks were set and implemented: to determine the total content and radial differentiation of elements in the studied soils; to reveal the features of the biological accumulation of elements by the dominant types of vegetation cover. The elemental composition of soils and plants was determined on a serial X-ray fluorescence spectrometer S6 JAGUAR according to the method for determining the mass fraction of metals and metal oxides in powder samples. It has been established that the soils of the Nadym region are characterized by a low content of macroelements, including potassium, calcium, and phosphorus necessary for the mineral nutrition of plants. Calculation of soil-geochemical coefficients shows that the studied soils have an average degree of weathering and leaching moisture regime, peat-gley and cryozems are classified as more fertile soils. Ca, P, and S are accumulated in organic soil horizons, and Co, Cr, and Ni are accumulated in mineral horizons. The radial geochemical structure of cryozems combines features of eluvial-illuvial differentiation and biogenic accumulation. In podzols, the distribution of all elements is eluvial-illuvial, with a minimum in the podzolic horizon. Among plants, the leader in the accumulation of elements is dwarf birch (the maximum accumulation of Ca, K, P, Mg, Zn, Ni), in mosses, on the contrary, the minimum accumulation of elements was found. The elements of energetic and strong accumulation (Kb=n-100n) include Pb, Mo, Cd, Cl, S.