Lanthanum-doped (La:(HfZr)O2) nanometer films of a solid solution of hafnium oxide and zirconium oxide are of great interest for the development of a universal memory that combines an unlimited number of RAM reprogramming cycles and nonvolatile flash memory. This work is devoted to studying the cathodoluminescent properties of La:HfZrO thin films with different contents of lanthanum. It is shown that the cathodoluminescence spectra are dominated by two emission bands with intensity maxima at 2.7 and 2.2 eV. The blue band with an energy of 2.7 eV is due to an oxygen vacancy in La:HfZrO. The study of the influence of the lanthanum impurity and annealing of the samples in argon suggests that the yellow band with the emission maximum at 2.2 eV is related to the oxygen divacancy.