Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A method of local interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree in arbitrarily located interpolation nodes has been developed. This makes it possible to calculate intermediate values of tabular functions between interpolation nodes. The conducted analysis of the latest research and publications in the field of interpolation of tabular functions showed that the main part of the research is a strict theory of interpolation, i.e. clarification of its fundamental mathematical provisions. Some features of the interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree are considered, namely: the solution algorithm and mathematical formulation of the interpolation problem are given; its formalized notation is given, as well as the matrix notation of interpolation procedures for certain values of the argument. A scalar algorithm for solving the problem of interpolation of tabular functions from one independent variable using the Taylor polynomial of the 2nd, 3rd, and 4th degrees has been developed. The simplicity and clarity of this algorithm is one of its advantages, but the algorithm is inconvenient for software implementation. The mathematical formulation of the problem of interpolation of tabular functions in terms of matrix algebra is given. The interpolation task is reduced to performing the following actions: based on the values of nodal points known from the table, it is necessary to calculate the Taylor matrix of the nth degree; based on the function values specified in the table a column vector of interpolation nodes should be formed; solve a linear system of algebraic equations, the root of which is the numerical coefficients of the Taylor polynomial of the nth degree. A method of calculating the coefficients of the interpolant, given by the Taylor polynomial of the nth degree for one independent variable has been developed. The essence of the method reduces to the product of the matrix, inverse of the Taylor matrix, which is determined by the nodal points of the tabular function, by a column vector containing the values of the interpolation nodes. Specific examples demonstrate the peculiarities of calculating the interpolant coefficients of the 2nd, 3rd and 4th degrees for one independent variable, and for each of them the interpolated value of the function at a given point is calculated. Calculations were performed in the Excel environment, which by analogy can be successfully implemented in any other computing environment.
A method of local interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree in arbitrarily located interpolation nodes has been developed. This makes it possible to calculate intermediate values of tabular functions between interpolation nodes. The conducted analysis of the latest research and publications in the field of interpolation of tabular functions showed that the main part of the research is a strict theory of interpolation, i.e. clarification of its fundamental mathematical provisions. Some features of the interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree are considered, namely: the solution algorithm and mathematical formulation of the interpolation problem are given; its formalized notation is given, as well as the matrix notation of interpolation procedures for certain values of the argument. A scalar algorithm for solving the problem of interpolation of tabular functions from one independent variable using the Taylor polynomial of the 2nd, 3rd, and 4th degrees has been developed. The simplicity and clarity of this algorithm is one of its advantages, but the algorithm is inconvenient for software implementation. The mathematical formulation of the problem of interpolation of tabular functions in terms of matrix algebra is given. The interpolation task is reduced to performing the following actions: based on the values of nodal points known from the table, it is necessary to calculate the Taylor matrix of the nth degree; based on the function values specified in the table a column vector of interpolation nodes should be formed; solve a linear system of algebraic equations, the root of which is the numerical coefficients of the Taylor polynomial of the nth degree. A method of calculating the coefficients of the interpolant, given by the Taylor polynomial of the nth degree for one independent variable has been developed. The essence of the method reduces to the product of the matrix, inverse of the Taylor matrix, which is determined by the nodal points of the tabular function, by a column vector containing the values of the interpolation nodes. Specific examples demonstrate the peculiarities of calculating the interpolant coefficients of the 2nd, 3rd and 4th degrees for one independent variable, and for each of them the interpolated value of the function at a given point is calculated. Calculations were performed in the Excel environment, which by analogy can be successfully implemented in any other computing environment.
A methodology has been developed for numerically differentiating table-given functions using a Taylor polynomial of degree n, which enables the computation of k-th order derivatives (k £ n) at any point between arbitrarily located interpolation nodes in one, two, or multiple independent variables. Recent research and publications have been analysed, allowing for the assessment of the task complexity of computing derivatives of a function based on the values of independent variables within a certain interval of a table-given function. The formulation of the problem of numerical differentiation of periodic table-given functions using the Taylor polynomial of the nth order from one, two, and multiple independent variables is described. It is established that any tabulated function should be initially smoothed by some function whose analytical expression is a global (local) interpolating polynomial or a polynomial obtained by least squares approximation with some error. The derivative of such a table-given function is understood as the derivative of its interpolant. A method of numerical differentiation of table-given functions is developed, the essence of which is reduced to the product of the Taylor row vector of the n-th degree by the matrix of the k-th order of its differentiation (k £ n) and on the column vector of the coefficients of the corresponding interpolant. Some problem formulations of numerical differentiation of table-given functions using Taylor polynomials of degree n, corresponding solution algorithms, and specific implementation examples are provided. It has been established that to compute the k-th order derivative of a table-given function at a given value of the independent variable, the following steps need to be performed: based on the given table data, form a matrix equation, solve it to obtain the coefficients of the interpolant; substitute into the corresponding matrix expression the obtained interpolant coefficients and the independent variable value, and perform the matrix multiplication operations specified in the expression. The verification of the accuracy of the calculations using the appropriate central difference formulas was made. It was established that the calculated derivatives of the k-th order using the formulas of central finite differences practically coincide with the values obtained using the Taylor polynomial interpolation of the n-th order, that is, the values of the derivatives are calculated correctly.
Розроблено методологію чисельного диференціювання періодичних таблично-заданих функцій з використанням многочлена Фур'є n-го порядку, яка дає можливість обчислювати похідні k-го порядку (k £ n) в будь-яких точках між довільно розташованими вузлами інтерполяції. Проаналізовано останні дослідження та публікації, що дало змогу встановити складність задачі обчислення похідних від функції за значеннями аргумента на деякому інтервалі значень табличної функції. Наведено постановку задачі чисельного диференціювання періодичних таблично-заданих функцій з використанням многочлена Фур'є n-го порядку. Встановлено, що будь-яку таблично-задану функцію спочатку згладжують деякою функцією, котра є глобальним (локальним) інтерполяційним многочленом або многочленом, який отримано за МНК (англ. Ordinary Least Squares, OLS) з деякою похибкою. Під похідною від такої табличної функції розуміють похідну від її інтерполянти. Розроблено метод чисельного диференціювання періодичних таблично-заданих функцій, сутність якого зводиться до добутку вектора-рядка Фур'є n-го порядку на матрицю k-го порядку його диференціювання (k £ n) і на вектор-стовпець коефіцієнтів відповідної інтерполянти. Наведено деякі постановки задач чисельного диференціювання періодичних таблично-заданих функцій з використанням многочлена Фур'є n-го порядку, відповідні алгоритми їх розв'язання та конкретні приклади реалізації. Встановлено, що для обчислення похідної k-го порядку від табличної функції за прийнятим значенням аргумента потрібно виконати такі дії: за даними таблиці сформувати матричне рівняння та розв'язати його; підставити у відповідний матричний вираз отриманий корінь з матричного рівняння та значення аргумента і виконати вказані у виразі дії множення матриць. Здійснено перевірку правильності виконання розрахунків з використанням відповідних центральних різницевих формул. Встановлено, що обчислені похідні k-го порядку з використанням формул центральних скінченних різниць практично збігаються зі значеннями, отриманими за допомогою інтерполяційного многочлена Фур'є n-го порядку, тобто значення похідних обчислено правильно.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.