2024
DOI: 10.21123/bsj.2024.10736
|View full text |Cite
|
Sign up to set email alerts
|

نموذج لمراقبة أداء الطاقة الشمسية الكهروضوئية والتنبؤ الإحصائي باستخدام الشبكة العصبية متعددة الطبقات والذكاء الاصطناعي

G. Kumaravel,
S. Kirthiga,
Mohammed Mahmood Hamed Al Shekaili
et al.

Abstract: إن الطبيعة الطبوغرافية لسلطنة عمان تجعل نظام الطاقة الشمسية خيارًا قابلاً للتطبيق وموثوقًا لإنتاج الطاقة بكميات كبيرة في سوق الطاقة المتجددة. تشهد العديد من المناطق الصحراوية في عمان مستويات عالية من الإشعاع الشمسي. وهذا مناسب للأنظمة الكهروضوئية لأن كفاءتها تعتمد بشكل أساسي على الإشعاع الشمسي. ومع ذلك، في التطبيقات في الوقت الفعلي، تؤثر العديد من العوامل البيئية على كفاءة الألواح الشمسية وبالتالي على أدائها. في هذه المقالة، تم اقتراح الشبكة الطبيعية (العصبية) الأمامية متعددة الطبقات (MFFN) لتتبع أداء نظام الط… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?