“…In these general terms, for the sake of generality, we assume that there always exists a one to one correspondence between arbitrary F (q, p) and F (q, p). If this general correspondence which can be summarized as F (q, p) ↔ F (q, p), F (q, p) ⋆ G(q, p) ↔ F (q, p) Ĝ(q, p) (15) is used for the QCT (1), the corresponding transformation in the c-number phase-space can be written as: [14] F (q, p) ⋆ q ⋆ F −1 (q, p) = Q(q, p), F (q, p) ⋆ p ⋆ F −1 (q, p) = P (q, p)…”