We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum dot molecules. We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse. To overcome fluctuations in control field parameters, we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude. We show that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields, leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states. The method demonstrates resilience to fluctuations in control field parameters, making it a promising approach for reliable and efficient population transfer in practical applications.