Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Intracratonic strike-slip faults have been recognized as a major factor controlling the formation of fracture-cave carbonate reservoirs in deep buried basins, yet which properties and how the strike-slip faults influence reservoir distribution and their connectivity are still ambiguous. This uncertainty significantly restricts hydrocarbon exploration and development, such as in the Fuman oilfield, northern Tarim Basin, NW China. Using a high-resolution 3D seismic reflection survey and borehole data, we investigated the geometry and kinematic evolution of the FI17 fault zone in the Fuman oilfield. This fault zone is characterized by a single fault zone, pop-up or pull-apart structures, right-stepping en echelon normal faults, and much smaller displacement (<30 m) normal fault arrays from bottom to top. The FI17 fault zone consists of four genetic segments, including the extensional strike-slip duplex, Riedel left-lateral shear, right-stepping horsetail splay, and horizontal slip segments in map view. In particular, the formation of the ∼18 km Riedel shear zone is characterized by the growth and linkage of segmented shear faults (synthetic and secondary synthetic shears). We observed that the large-scale fault-controlled fracture-cave reservoirs are distributed in positions with wider fault zones, which are characterized by overlapping of neighboring secondary shear faults. Furthermore, the reservoir width examined in this study is natural logarithmic correlated (positively) to the fault zone width. The reservoirs linked by the same shear faults show better internal connectivity. The spatial coherence between fault geometry and reservoir features indicates that segmentation and lateral growth of intracratonic strike-slip faults controls the occurrence of fracture-cave reservoirs, which may provide support for reservoir prediction in the Fuman oilfield and other deeply buried fault-controlled carbonate reservoirs in general.
Intracratonic strike-slip faults have been recognized as a major factor controlling the formation of fracture-cave carbonate reservoirs in deep buried basins, yet which properties and how the strike-slip faults influence reservoir distribution and their connectivity are still ambiguous. This uncertainty significantly restricts hydrocarbon exploration and development, such as in the Fuman oilfield, northern Tarim Basin, NW China. Using a high-resolution 3D seismic reflection survey and borehole data, we investigated the geometry and kinematic evolution of the FI17 fault zone in the Fuman oilfield. This fault zone is characterized by a single fault zone, pop-up or pull-apart structures, right-stepping en echelon normal faults, and much smaller displacement (<30 m) normal fault arrays from bottom to top. The FI17 fault zone consists of four genetic segments, including the extensional strike-slip duplex, Riedel left-lateral shear, right-stepping horsetail splay, and horizontal slip segments in map view. In particular, the formation of the ∼18 km Riedel shear zone is characterized by the growth and linkage of segmented shear faults (synthetic and secondary synthetic shears). We observed that the large-scale fault-controlled fracture-cave reservoirs are distributed in positions with wider fault zones, which are characterized by overlapping of neighboring secondary shear faults. Furthermore, the reservoir width examined in this study is natural logarithmic correlated (positively) to the fault zone width. The reservoirs linked by the same shear faults show better internal connectivity. The spatial coherence between fault geometry and reservoir features indicates that segmentation and lateral growth of intracratonic strike-slip faults controls the occurrence of fracture-cave reservoirs, which may provide support for reservoir prediction in the Fuman oilfield and other deeply buried fault-controlled carbonate reservoirs in general.
Shale formations often contain a high proportion of clay minerals, which, upon contact with drilling fluid, undergo hydration expansion. This leads to wellbore instability, a problem that poses significant challenges globally. This study aims to investigate the variation of mechanical properties of shale with respect to hydration time. We employ an empirical model that relates shale strength parameters to the time of drilling through geological formations. Additionally, we consider both shear failure along the wellbore boundary and shear sliding along bedding planes in the analysis. We establish a predictive model for wellbore instability in shale formations. The model quantitatively analyzes the variation of wellbore collapse pressure with drilling time. The research findings indicate that, when the influence of bedding is considered, both the wellbore collapse pressure and the optimal well trajectory undergo significant changes, in addition, for some wellbore trajectories, the collapse pressure can increase by more than 30%. Therefore, it is essential to account for the influence of bedding in wellbore stability analysis in shale formations. As the bedding dip angle changes, both the numerical values and distribution range of wellbore collapse pressure and the optimal well trajectory change noticeably. Changes in bedding dip direction, however, do not affect the numerical values of collapse pressure but do influence the distribution region of the optimal well trajectory. Thus, in wellbore trajectory design within shale formations, it is crucial to determine the orientation of bedding and adjust the well trajectory accordingly to enhance wellbore stability. Furthermore, shale hydration does not impact the optimal well trajectory for a block, but with prolonged hydration, the minimum drilling fluid density required to maintain wellbore stability gradually increases. This suggests that hydration intensifies the weakening effect on bedding plane strength. The research results are helpful to understand the effect of hydration on shale wellbore stability and ensure shale wellbore stability during drilling cycle.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.