In the ultra-long distance sensing domain, recently Raman random fiber laser (RRFL) demonstrated advantages of ultrawide sensing-bandwidth in dynamic sensing, compared with pulse-probing cases. However, such a scheme is still in the preliminary stage, and the key parameters such as sensitivity have not been characterized. In this work, a time-dependent spectrum-balanced model is proposed, which can accurately and quickly describe the spectral shape of RRFL and the evolution of the power and the spectrum. Based on this model, the relationship between the sensitivity and the feedback bandwidth is studied. The calculated results show that the sensitivity is inversely proportional to the feedback bandwidth. Then in the proof-of-concept experiment, by changing the bandwidth of sensing FBG, the results of sensitivity are well coincident with the simulation. This work provides an effective platform for studying the evolution of RRFL spectrum, as well as a novel way for further enhancing the performance of the dynamic sensing system based on ultra-long RRFL.