Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<b>Objective:</b> The optical information change of beams acted with biological tissue can get an insight into the new optical effects of tissue, even can provide a theoretical basis for the development of biphotonic medical diagnosis and therapy technologies. Polarization technology is also widely used in the field of biological detection own to its advantages of non-contact, rich information and without staining markers. In this work, the polarization behaviors of partially coherent screw-linear edge mixed dislocation beam transmitting in biological tissue have been analyzed and explored. Simultaneously, in order to gain a clearer and more intuitive understanding of the mixed dislocation beam, both the normalized intensity and phase distribution at source plane for different parameters <i>a</i> and <i>b</i> also have been discussed. We hope that the obtained results will provide theoretical and experimental foundation for expanding the application of singularity beams in biological tissue imaging technology.<br> <b>Method:</b> By combining the Schell term with the field distribution of the screw-linear edge mixed dislocation beam at the source plane, and based on the generalized Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements of partially coherent screw-linear edge dislocation beam propagating in biological tissues are derived. Adopting the unified theory of coherence and polarization, the polarization behaviors of the beams can be investigated in detailed.<br> <b>Results:</b> At the source plane, the intensity is non axisymmetric distribution, and there exists a coherent vortex with a topological charge size of 1 and a linear edge dislocation. The sign of <i>a</i> is related to the rotation direction of the phase singularity. The larger the value of b, the farther the linear edge dislocation is from the origin (Figs. 1-4). At the source plane, the degree of polarization and ellipticity between the same two points are independent of the four parameters, including dimensionless parameter <i>a</i>, the off-axis distance of edge dislocation <i>b</i>, the spatial self-correlation length <i>σ<sub>yy</sub></i>, the spatial mutual-correlation length <i>σ<sub>xy</sub></i> (Figs. 5(a), 7(a), 8(a), 10(a), 11(a), 13(a), 14(a), 16(a)), the orientation angle is only independent of a and <i>σ<sub>xy</sub></i> (Figs. 6(a), 12(a)); the polarization of different two points is independent of <i>a</i> and <i>b</i> (Figs. 5(b)-10(b)), but is related to <i>σ<sub>yy</sub></i> and <i>σ<sub>xy</sub></i> (Figs. 11(b)-13(b)). In transmission, the polarization degree and ellipticity of different two points fluctuate greatly (Figs. 5, 7, 8, 10, 11, 13, 14, 16) and the orientation angle displays less fluctuation (Figs. 6, 9, 12, 13). Finally, all the polarization state parameters tend to be a certain value, respectively.<br> <b>Conclusions:</b> The results show that when <i>b</i> is smaller, the linear edge dislocation is paraxial and plays an important role in the polarization state change; when <i>b</i> is larger, the polarization state changes of the screw-linear edge mixed dislocation beam will tend to be the pattern of spiral beams. The absolute value of the difference between <i>σ<sub>yy</sub></i> and <i>σ<sub>xy</sub></i> is also one of main factors of influencing the polarization state. The sign of <i>a</i> does not affect the change in polarization state, but its magnitude affects the changes speed. Due to more complex factors determining the correlation fluctuations between different points in the light field, the changes of different two points are more sensitive than those of the same two points in shallow biological tissue. Beams with different parameters can be selected for different application requirements.
<b>Objective:</b> The optical information change of beams acted with biological tissue can get an insight into the new optical effects of tissue, even can provide a theoretical basis for the development of biphotonic medical diagnosis and therapy technologies. Polarization technology is also widely used in the field of biological detection own to its advantages of non-contact, rich information and without staining markers. In this work, the polarization behaviors of partially coherent screw-linear edge mixed dislocation beam transmitting in biological tissue have been analyzed and explored. Simultaneously, in order to gain a clearer and more intuitive understanding of the mixed dislocation beam, both the normalized intensity and phase distribution at source plane for different parameters <i>a</i> and <i>b</i> also have been discussed. We hope that the obtained results will provide theoretical and experimental foundation for expanding the application of singularity beams in biological tissue imaging technology.<br> <b>Method:</b> By combining the Schell term with the field distribution of the screw-linear edge mixed dislocation beam at the source plane, and based on the generalized Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements of partially coherent screw-linear edge dislocation beam propagating in biological tissues are derived. Adopting the unified theory of coherence and polarization, the polarization behaviors of the beams can be investigated in detailed.<br> <b>Results:</b> At the source plane, the intensity is non axisymmetric distribution, and there exists a coherent vortex with a topological charge size of 1 and a linear edge dislocation. The sign of <i>a</i> is related to the rotation direction of the phase singularity. The larger the value of b, the farther the linear edge dislocation is from the origin (Figs. 1-4). At the source plane, the degree of polarization and ellipticity between the same two points are independent of the four parameters, including dimensionless parameter <i>a</i>, the off-axis distance of edge dislocation <i>b</i>, the spatial self-correlation length <i>σ<sub>yy</sub></i>, the spatial mutual-correlation length <i>σ<sub>xy</sub></i> (Figs. 5(a), 7(a), 8(a), 10(a), 11(a), 13(a), 14(a), 16(a)), the orientation angle is only independent of a and <i>σ<sub>xy</sub></i> (Figs. 6(a), 12(a)); the polarization of different two points is independent of <i>a</i> and <i>b</i> (Figs. 5(b)-10(b)), but is related to <i>σ<sub>yy</sub></i> and <i>σ<sub>xy</sub></i> (Figs. 11(b)-13(b)). In transmission, the polarization degree and ellipticity of different two points fluctuate greatly (Figs. 5, 7, 8, 10, 11, 13, 14, 16) and the orientation angle displays less fluctuation (Figs. 6, 9, 12, 13). Finally, all the polarization state parameters tend to be a certain value, respectively.<br> <b>Conclusions:</b> The results show that when <i>b</i> is smaller, the linear edge dislocation is paraxial and plays an important role in the polarization state change; when <i>b</i> is larger, the polarization state changes of the screw-linear edge mixed dislocation beam will tend to be the pattern of spiral beams. The absolute value of the difference between <i>σ<sub>yy</sub></i> and <i>σ<sub>xy</sub></i> is also one of main factors of influencing the polarization state. The sign of <i>a</i> does not affect the change in polarization state, but its magnitude affects the changes speed. Due to more complex factors determining the correlation fluctuations between different points in the light field, the changes of different two points are more sensitive than those of the same two points in shallow biological tissue. Beams with different parameters can be selected for different application requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.