Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To explore the multi‐functional characteristics of an artificial Caragana korshinskii ecosystem with different plantation ages, we assessed the differences in ecosystem multi‐functionality, the main influencing factors, and recovery dynamics over 6, 12, 18, 40, and 50 years. The results showed a binomial correlation between planting age and regulatory function (p < 0.05, R2 = 0.459), and a significant linear positive correlation between the multi‐functionality index and supporting and provisioning services. Meanwhile, a significant trinomial correlation was observed among planting age, nutrient transformation, and nutrient cycle (p < 0.01, R2 = 0.754), whereas a linear positive correlation (p < 0.05) was detected between plantation age and plant nutrient uptake, soil fertility, maintenance of plant diversity, aboveground primary productivity, and ecosystem multi‐functionality. The multi‐functionality index was significantly positively correlated with plant nutrient uptake, soil fertility, maintenance of plant diversity, and aboveground primary productivity. Plant diversity maintenance, aboveground primary productivity, and water conservation all had significant effects on the multi‐functionality index. The ecosystem multi‐functionality of C. korshinskii forests significantly increased with the increase of plantation age, and C. korshinskii establishment considerably improved plant nutrient uptake, soil fertility, maintenance of plant diversity, aboveground primary productivity, and ecosystem multi‐functionality. The water conservation function of the ecosystem peaked 12 years after planting C. korshinskii, and considerably decreased 40 years after planting, indicating that the limiting factors must be accounted for when evaluating ecosystem multi‐functionality in arid and semi‐arid areas.
To explore the multi‐functional characteristics of an artificial Caragana korshinskii ecosystem with different plantation ages, we assessed the differences in ecosystem multi‐functionality, the main influencing factors, and recovery dynamics over 6, 12, 18, 40, and 50 years. The results showed a binomial correlation between planting age and regulatory function (p < 0.05, R2 = 0.459), and a significant linear positive correlation between the multi‐functionality index and supporting and provisioning services. Meanwhile, a significant trinomial correlation was observed among planting age, nutrient transformation, and nutrient cycle (p < 0.01, R2 = 0.754), whereas a linear positive correlation (p < 0.05) was detected between plantation age and plant nutrient uptake, soil fertility, maintenance of plant diversity, aboveground primary productivity, and ecosystem multi‐functionality. The multi‐functionality index was significantly positively correlated with plant nutrient uptake, soil fertility, maintenance of plant diversity, and aboveground primary productivity. Plant diversity maintenance, aboveground primary productivity, and water conservation all had significant effects on the multi‐functionality index. The ecosystem multi‐functionality of C. korshinskii forests significantly increased with the increase of plantation age, and C. korshinskii establishment considerably improved plant nutrient uptake, soil fertility, maintenance of plant diversity, aboveground primary productivity, and ecosystem multi‐functionality. The water conservation function of the ecosystem peaked 12 years after planting C. korshinskii, and considerably decreased 40 years after planting, indicating that the limiting factors must be accounted for when evaluating ecosystem multi‐functionality in arid and semi‐arid areas.
The relationship between biodiversity and ecosystem multifunctionality (EMF) is crucial for understanding the processes of ecological restoration in semi-arid regions. However, partitioning the relative influence of various biodiversity attributes, namely taxonomic, functional, and phylogenetic diversity, on EMF during secondary succession is still unclear. This study aimed to bridge the gap by employing field measurements and the chronosequence approach at 21 plots with different stand ages and precipitation conditions on the Loess Plateau of China. For diversity indices, we calculated the Shannon–Wiener diversity index, Simpson’s dominance index, Pielou evenness index, community weighted mean (CWM), functional variance (FDvar), and Faith’s phylogenetic diversity (PD) based on the empirically measured composition and traits of plant species. The EMF was expressed as the averaged value of eight function variables (including aboveground biomass, root biomass, soil total carbon, total nitrogen, and total phosphorus content, soil organic carbon, available nitrogen and available phosphorus content). The results showed that species evenness and CWM of leaf dry matter content (LDMC) significantly increased yet the CWM of specific leaf area (SLA) decreased with stand age, indicating the resource-use strategy of the plants became more conservative through succession into its later stages. The EMF increased with both stand age and mean annual precipitation. The structural equation model revealed that stand age, soil water content (SWC), and the multiple diversity indices altogether accounted for 56.0% of the variation in the EMF. PD and the CWMs of plant height and LDMC had positive effects on the EMF, and the FDvar of leaf nitrogen had negative effects on EMF. However, the Shannon Wiener diversity had no significant effect on the EMF. Our results suggest that functional and phylogenetic diversity are more important than taxonomic diversity in predicting EMF, and that multidimensional biodiversity indices should be jointly considered to better predict EMF during the succession of semiarid grasslands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.