Low Pressure Turbine (LPT) was designed to recover exhaust energy from Internal Combustion (IC) engine. The LPT is located downstream retrieved exhaust heat energy from combustion after flowing through the high pressure turbine (HPT). The work output obtained from the exhaust energy is used to drive an electric generator with power output of 1.0kW. These was not done by commercial turbine as the low efficiency resulted when operated. The main purpose of this project is to develop a scaling model for LPT with power output up to 100kW. An existing LPT that was designed with output of 1.0 kW used as guideline to upscale the turbine. Scaling factor was obtained by comparing the baseline with power output. The turbine performance was analysed by using a commercial Computational Fluid Dynamic (CFD) ANSYS CFX. The study found that the scaling factor f, of 10 can be used to produce a 100kW at passage. Thus, the geometrical parameter will be scaled accordingly. The rotational speed is reduced from 50,000 rpm to 5,000 rpm. The CFD analysis found that 81% of total-static efficiency, ht-s at velocity ratio VR, of 0.68 and the Pressure Ratio PR, of 1.12 producing power of 119.88 kW which nearest with the design point which is at 100 kW. Despite the LPT swallowing capacity is increased by 50 times, the LPT is still limited by the operational choking Pressure Ratio, PR limitation which is 1.4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.