Gold nanoparticles (AuNPs) were synthesized via laser ablation technique. PEO/CMC-AuNPs nanocomposites were prepared using the casting method. Water was chosen as a solvent because it was considered an eco-friendly solvent compared to other organic solvents. SEM micrographs reveal uniformly distributed AuNPs on the sample surface. 3D images were used to estimate the roughness parameters. The $${\varepsilon }^{{\prime}}$$ ε ′ and $${\varepsilon }^{{\prime\prime} }$$ ε ″ values decrease at high frequencies due to the short time allotted for dipole aligning. The behavior of tan$$\delta$$ δ was attributed to more dipoles that cannot follow the oscillating electric field. The values of M′ approach zero at low frequencies due to the insignificant effect of electrode polarization. The presence of semicircles below the real axis M′ implies a dispersion in relaxation time, indicating that the dielectric relaxation process follows the non-Debye model. The two regions' curves imply that the samples contain an electrical conduction mechanism of the hopping type. The conductivity was increased with the increase of AuNPs due to an increase in transition probability for hopping electrons. From the obtained results, the PEO/CMC-AuNPs nanocomposites can be considered superior to others in different biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.