In this paper, we developed the system for recognizing the orchid species by using the images of flower. We used MSRM (Maximal Similarity based on Region Merging) method for segmenting the flower object from the background and extracting the shape feature such as the distance from the edge to the centroid point of the flower, aspect ratio, roundness, moment invariant, fractal dimension and also extract color feature. We used HSV color feature with ignoring the V value. To retrieve the image, we used Support Vector Machine (SVM) method. Orchid is a unique flower. It has a part of flower called lip (labellum) that distinguishes it from other flowers even from other types of orchids. Thus, in this paper, we proposed to do feature extraction not only on flower region but also on lip (labellum) region. The result shows that our proposed method can increase the accuracy value of content based flower image retrieval for orchid species up to ± 14%. The most dominant feature is Centroid Contour Distance, Moment Invariant and HSV Color. The system accuracy is 85,33% in validation phase and 79,33% in testing phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.