This paper presents the design of a wideband microstrip patch antenna for LTE-A. The bandwidth of the conventional patch is enlarged by using etched slots at the antenna patch. The designed antenna has been fabricated by using thin film and photolithographic technique and has been measured by using the Vector Network Analyzer. The simulated and measured results were found to have good match with each other. Then, by using the designed single element antenna, a four-element MIMO antenna system has been built employing orthogonal polarization diversity. Isolation between the microstrip elements is increased by placing metal structure between antenna elements. For more isolation between antenna elements, Slotted Ground Plane SGP is utilized. It is found, by using commercial software CST Microwave Studio and measurement, that the designed planar MIMO antenna system has sufficiently high return loss and low mutual coupling at the required bandwidth of 70 MHz. It is found also that the developed antenna system meets the requirements for LTE-Advanced (2500-2570 MHz) band "CA-B7" as of today"s standard based on 36.101 Table 5.5-1 (March 2012) .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.