When working out 3D building-up modes, it is necessary to predict the material properties of the resulting products. For this purpose, the crystallography of aluminum bronze grains after electron beam melting has been studied by EBSD analysis methods. To estimate the possibility of sample form changes by pressure treatment, we simulated structural changes by the method of molecular dynamics during deformation by compression of individual grains of established growth orientations. The analysis was carried out for free lateral faces and grain deformation in confined conditions. Simulation and experiments on single crystals with free lateral faces revealed the occurrence of stepwise deformation in different parts of the crystal and its division into deformation domains. Each domain is characterized by a shear along a certain slip system with the maximum Schmidt factor. Blocking the shear towards the lateral faces leads to selectivity of the shear along the slip systems that provide the required shape change. Based on the simulation results, the relationship between stress–strain curves and structural characteristics is traced. A higher degree of strain hardening and a higher density of defects were found upon deformation in confined conditions. The deformation of the columnar grains of the built material occurs agreed with the systems with the maximum Schmidt factor.
The importance of taking into account directional solidification of grains formed during 3D printing is determined by a substantial influence of their crystallographic orientation on the mechanical properties of a loaded material. This issue is studied in the present study using molecular dynamics simulations. The compression of an FCC single crystal of aluminum bronze was performed along the <111> axis. A Ni single crystal, which is characterized by higher stacking fault energy (SFE) than aluminum bronze, was also considered. It was found that the first dislocations started to move earlier in the material with lower SFE, in which the slip of two Shockley partials was observed. In the case of the material with higher SFE, the slip of a full dislocation occurred via successive splitting of its segments into partial dislocations. Regardless of the SFE value, the deformation was primarily occurred by means of the formation of dislocation complexes involved stair-rod dislocations and partial dislocations on adjacent slip planes. Hardening and softening segments of the calculated stress–strain curve were shown to correspond to the periods of hindering of dislocations at dislocation pileups and dislocation movement between them. The simulation results well agree with the experimental findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.