We have used neutron monitor data covering a wide range of energy over a period of 22 years , as well as sea-level multidirectional meson telescope data from Nagoya to examine the latitude effect of solar diurnal vectors and its dependence on the polarity of interplanetary magnetic field (IMF). By sorting the daily cosmic-ray data according to whether the IMF is toward (T) or away (A) from the Sun, the annual mean solar diurnal variations (amplitude and phase) for the T and A days were determined separately. Results showed a northward-pointing latitudinal gradient from neutron monitors of the most northerly latitudes, and a predominant southward gradient at high southerly latitudes. The resultant latitudinal cosmic-ray gradients are the sum of two gradients: a north -south symmetry gradient (occurring in minimum and maximum solar activity years), and a northsouth asymmetry gradient (occurring during different phases of solar activity cycles). The difference vector (T -A) between the solar diurnal vector for two groups was calculated, which represents a good indicator for the resultant perpendicular gradient relative to the Earth. This difference vector shows a considerable change in phase for detectors located in the northern hemisphere of the Earth. On the other hand, there exists much less change in phase for detectors located in the southern hemisphere.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965-1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal variations displays a %year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separate solar cycle variations. Moreover, during the declining period of the twenty and twenty-one solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.