In lymph nodes, as peripheral organs of the immune system, the patterns of their growth and development are unique in many ways, especially during the prenatal period of ontogenesis. The changes in the absolute and relative mass of lymph nodes in 66 bovine fetuses of different gestational ages (2–9 months) were studied. The weight of the fetuses and organs was determined with an accuracy of 0.001 g. According to the indicators of weight, body length, and the degree of development of the fetal skin derivatives, their age was established. It was found that in the first third of the fetal period of ontogenesis, the dynamics of the lymph nodes’ absolute mass was characterized by a moderate increase, which occurred simultaneously with an increase in the weight of the fetus itself. The relative weight at the beginning of the fetal period changed unevenly: it decreased in the superficial cervical and mandibular and increased in the popliteal and caudal mediastinal lymph nodes. In the second third of the fetal period, both the absolute and the relative weight of the examined organs increased dramatically (with the maximum at 7 months-old age). During the last third of the fetal period, a gradual increase in the absolute mass of all lymph nodes was found, and their relative mass, on the contrary, decreased moderately. In the second and last third of prenatal development, there was no direct relationship between the growth of the lymph nodes mass and the fetal total mass.
A feature of rabbit gut-associated lymphoid tissue is that its structure is more developed than in other animal species. In rabbits it is composed of sacculus rotundus, vermiform appendix and Peyer’s patches. These immune formations contain an organized component of lymphoid tissue – lymphoid nodules (B-cell zone) and interfollicular region (T-cell). Secondary lymphoid nodules with germinal centers presented in them are formed due to antigen stimulation. The caecum of Hyplus rabbits at the age of 30 -, 60 - and 90-days was investigated. Each age group consisted of 5 rabbits. Experimental rabbits are clinically healthy, unvaccinated and untreated against ecto- and endoparasites. Peyer’s patches of the caecum were selected for the study and fixed in 10% of formalin. Subsequently, the specimens stained with hematoxylin-eosin were prepared from the obtained samples. On the 30th day of life, Peyer’s patches in the cecum were detected by gross examination. On the histological level, they had formed interfollicular region and lymphoid nodules. In turn, lymphoid nodules were divided into primary and secondary ones. A well-defined mantle zone and germinal centers were observed in the secondary lymphoid nodules. The regularities of their area indicators increase (mean value, median and interquartile range (IQR)) and their correlation were studied. The most intensive growth of the mantle area and the germinal center was observed from the 30th to the 60th day. The relative area of the mantle zone and the germinal center as part of the secondary lymphoid nodule was determined. Its value did not change during the experimental period.
Racing pigeons are potential carriers of zooanthroponic diseases, since they can travel considerable distances during their flight. The study of the formation features of the pigeon skeleton’s hematopoietic function on different levels of its structural organization with the determination of the relationship between the growth and development of hematopoietic components and the processes of osteohistogenesis is necessary to understand the immunity of pigeons, especially during the early stages of their development when young animals are in the greatest risk of disease, especially during processes of osteogenesis and haematopoiesis in chicks. The bones of the axial and peripheral skeleton of one-day-old, 5-, 10-, 15-, 20-, and 25-day-old pigeons (n = 5) were examined. The presence and degree of development of dia- and epiphyseal ossification centers (EOCs), their relative area (RA) and X-ray density in the organs of universal hematopoiesis were determined on radiographs made on an x-Ray-TW-102 x-ray machine with an Alpha 4600 receiver using the MultiVox Dicom Viewer program. It was established that in day-old pigeons the rudiments of the studied bones are completely built by cartilaginous tissue, have low radiographic density, and fuzzy contours on radiographs. On the 10th day of life, the axial skeleton of pigeon cubs has formed EOCs of head and a tubercle on the 5th rib (third «true rib»), while in the bones of the peripheral skeleton there is an enchondral EOC of the diaphysis. The spongy and compact bone structure (BS) of the bones were fuzzy. The body of the rib and the epiphyses of the limbs’ tubular bones were cartilaginous. The X-ray density of the humerus at this age remains unchanged, and the tibial-metatarsal increases by 1.5 times, reaching 12 HU. In 15-day-old chicks, the RA of the EOC in the skeleton was moderately increased due to an increase in the RA of previously formed EOCs at the age of 10 days, the appearance of individual EOCs in the body of 5th rib, and in the tubular bones of the limbs, the enchondral EOCs of the proximal and distal epiphyses. In the diaphysis of the extremities tubular bones, a strip-like compact BS was clearly distinguished, and in the epiphyses, a small-sized spongy BS. The X-ray density of the bones almost doubled, reaching 19–21 HU. In 20-day-old pigeons, the processes of osteohistogenesis in the skeleton were almost completed, in the studied bones, all the main and additional EOCs were well expressed, their RA increased sharply. X-ray density of bones did not change. For 25-day-old pigeons in the skeleton, there was a slight increase in RA of the EOC, a process of complete synostosis of the bones was characteristic. From the moment of the appearance of the EOC in 10-day-old chicks until they reach the age of 25 days, the bones of the axial skeleton and the skeleton of the limbs were formed by 95–100% of BS, and their X-ray density was increased almost 2.5 times, reaching 19–26 HU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.