Even if neoplastic cells express tumor associated antigens they still may fail to function as antigen presenting cells (APC) if they lack expression of one or more molecules critical for the induction of productive immunity. These cellular defects can be repaired by physiologic activation, transfection, or fusion of tumor cells with professional APC. Although such defects can be repaired, antitumor specific T cells may still fail to respond in vivo if they may have been tolerized. Here, human pre-B cell acute lymphoblastic leukemia (pre-B ALL) was used as a model to determine if primary human tumor cells can function as alloantigen presenting cells (alloAPC) or alternatively whether they induce anergy. In the present report, we show that pre-B cell ALL express alloantigen and adhesion molecules but uniformly lack B7–1 (CD80) and only a subset express B7–2 (CD86). Pre-B ALL cells are inefficient or ineffective alloAPC and those cases that lack expression of B7–1 and B7–2 also induce alloantigen specific T- cell unresponsiveness. Under these circumstances, T-cell unresponsiveness could be prevented by physiologic activation of tumor cells via CD40, cross-linking CD28, or signaling through the common gamma chain of the interleukin-2 receptor on T cells. Taken together, these results suggest that pre-B ALL may be incapable of inducing clinically significant T-cell-mediated antileukemia responses. This defect may be not only due to their inability to function as APC, but also due to their potential to induce tolerance. Attempts to induce clinically significant antitumor immune responses may then require not only mechanisms to repair the antigen presenting capacity of the tumor cells, but also reversal of tolerance.
We have previously shown that early human CD34high hematopoietic progenitors are maintained quiescent in part through autocrine transforming growth factor-beta 1 (TGF-beta 1). We also demonstrated that, in the presence of interleukin-3, interleukin-6, granulocyte colony-stimulating factor, and erythropoietin, TGF-beta 1 antisense oligonucleotides or anti-TGF-beta serum have an additive effect with KIT ligand (Steel factor [SF]), which suggests that they control different pathways of regulation in these conditions. This finding also suggests that autocrine TGF-beta 1 might suppress c-kit expression in primitive human hematopoietic progenitors. We have now distinguished two subpopulations of CD34high cells. One subpopulation expresses a c- kit mRNA that can be downmodulated by exogenous TGF-beta 1 within 6 hours. Another subpopulation of early CD34high cells expresses a low or undetectable level of c-kit mRNA, but its expression can be upmodulated within 6 hours by anti-TGF-beta. These effects disappear 48 hours after induction and cannot be maintained longer than 72 hours, even if TGF- beta 1 or anti-TGF-beta serum are added every day. Similar kinetics, although delayed, are observed with KIT protein expression. On the contrary, no specific effect of TGF-beta 1 was observed on c-fms, GAPDH, and transferrin receptor gene expression in these early progenitors. These results clarify the complex interaction between TGF- beta 1 and SF in normal early hematopoietic progenitors. SF does not switch off the TGF-beta 1 inhibitory pathway. Autocrine TGF-beta 1 appears to maintain these cells in a quiescent state, suppressing cell division by downmodulating the receptor of SF, a key cytokine costimulator of early progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.