The article presents an overview of experimental layout design solutions and the general operation scheme of combined heat and power systems with a high-temperature solid oxide fuel cell (SOFC). This system is an environmentally friendly and energy-saving way to produce electricity and heat. The use of high-temperature SOFCs makes it possible to obtain an electrical efficiency of 45–55%. Combining the electrochemical and mechanical system can increase the total efficiency by up to 60–65% in a hybrid power plant. This article discusses the structure and relationship between the components of a hybrid power plant and various modification options for efficient power generation. The technological schemes for existing and tested hybrid power plants with an SOFC and gas turbine are presented and described in detail. When designing a hybrid power plant, the key factors are the choice of design, heat source, and fuel-reforming method; the design of a solid oxide fuel cell and the number of modules in a stack; selecting devices for generating electricity with the development of cogeneration or trigeneration cycles (for possible use in thermal power plants and for the energy supply of social facilities); the direction of material flows within the system; pressure and tightness; and the interconnection of the hybrid power system elements. Researchers have accumulated and described in scientific papers extensive experience in designing, theoretical research, and numerical modeling of hybrid power plants with high-temperature SOFCs. It is shown that experimental hybrid power plants based on SOFCs of the megawatt class are in operation. Hybrid systems with an SOFC are designed only for the kilowatt power class. Trigeneration systems with a steam turbine exist only in the form of theoretical calculations. Trigeneration systems show the highest electrical efficiency, but the highest construction and service costs. Systems based on high-temperature SOFCs can be used for autonomous systems, and in combination with gas and steam turbines only at thermal power plants. Experimental laboratory studies are limited by the high cost of installations and the difficulties of testing the possibility of using combined heat and power systems on an industrial scale. Therefore, a more detailed study of the relationship between the units of a combined heat and power system is recommended in order to achieve the high efficiency indicators obtained from theoretical studies.
PURPOSE. Consider the problems and ways of developing hydrogen energy in Russia and in the Republic of Tatarstan. Analyze the main opportunities for the production, transportation, use of hydrogen at the enterprises of Tatarstan. Calculate the economic efficiency of the production of "green" hydrogen by electrolysis at TPP with CCGT in Tatarstan. METHODS. Based on the analysis of literature data and mathematical calculations. RESULTS. Green hydrogen is a promising solution for a decarbonized energy system, and 2020 saw an explosive focus on its use around the world. Tatarstan, as one of the leading economically developed regions of Russia, could take part in the production of "green" hydrogen, the design of electrochemical equipment for its production, the development of technologies for the use of fuel cells, scientific research and training of highly qualified specialists in the field of hydrogen energy. According to the calculations, the production of the most environmentally friendly hydrogen at TPPs with CCGT in Tatarstan will currently cost an average of 2 euros per kilogram, which is significantly lower than the existing market value. CONCLUSION. Tatarstan can become a competitive region for the production and distribution of "green" hydrogen. The main areas of activity should be the production of pure hydrogen, the industrial production of freight transport on fuel cells, the production of megawatt-class electrolysers, the utilization of hydrogen-containing petroleum gases at TPPs in gas turbines or combined cycles with fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.