In this paper, a problem of taking into account the electromagnetic radiation power in a numerical simulation of electron beam-plasma interaction is considered. The numerical model is based on the particle-in-cell (PIC) method and the finite-difference time-domain (FDTD) scheme for solving Maxwell equations.As a boundary condition, it is proposed to use a simple layer of absorption, that is, artificial attenuation of an electromagnetic wave by multiplying the electromagnetic field in the boundary domain by a coefficient k < 1 depending on the distance to the boundary. The numerical experiments performed show that using such a layer for absorbing the electromagnetic radiation and for taking into account its power is efficient.
Abstract. In this paper, the processes of electromagnetic radiation generation as a result of the interaction of a relativistic electron beam with hydrogen and argon plasma are studied on the basis of numerical modeling by the particle-in-cells method (PIC). Series of numerical experiments for different background plasma parameters, beam and magnetic field have been performed using modern computer systems with massively parallel architecture. Estimates of the radiation efficiency for both the initially homogeneous plasma and for longitudinal density modulation are obtained. It is shown that the change in the plasma density due to the development of the modulation instability makes it possible to increase substantially the power of the generated sub-THz radiation. The parameters used in numerical experiments correspond to the conditions of laboratory experiments on GOL-3 facility (BINP SB RAS, Novosibirsk, Russia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.