We propose a new method for construction of the absolute permeability map consistent with the interpreted results of well logging and well test measurements in oil reservoirs. Nadaraya-Watson kernel regression is used to approximate two-dimensional spatial distribution of the rock permeability. Parameters of the kernel regression are tuned by solving the optimization problem in which, for each well placed in an oil reservoir, we minimize the difference between the actual and predicted values of (i) absolute permeability at the well location (results of interpretation of well logging); (ii) absolute integral permeability of the domain around the well and (iii) skin factor (results of interpretation of well tests). Optimization task (inverse problem) is solved via multiple solutions to forward problems, in which we estimate the integral permeability of reservoir surrounding a well and the skin factor by the surrogate model. The last one is developed using an artificial neural network trained on the physics-based synthetic dataset generated using the procedure comprising the numerical simulation of bottomhole pressure decline curve in reservoir simulator followed by its interpretation using a semi-analytical reservoir model. The developed method for reservoir permeability map construction is applied to the available reservoir model (Egg Model) with highly heterogeneous permeability distribution due to the presence of highly-permeable channels. We showed that the constructed permeability map is hydrodynamically similar to the original one. Numerical simulations of production in the reservoir with constructed and original permeability maps are quantitatively similar in terms of the pore pressure and fluid saturations distribution at the end of the simulation period. Moreover, we obtained an good match between the obtained results of numerical simulations in terms of the flow rates and total volumes of produced oil, water and injected water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.