Background: This paper demonstrates the use of optical diagnostic methods to assess the dynamic skin changes observed in acute and chronic exposure to ultraviolet (UV) radiation in vivo. Methods: Firstly, in order to initiate photoaging (chronic UV exposure), animals (n = 40) were divided into two groups: chronic UV exposure (n = 30), and control (n = 10; without irradiation). Photoaging in animals was induced by chronic repeated exposure to UVA radiation three times per week, for 12 weeks continuously, while the UV dose increased stepwise over the course of the experiment (55 minimal erythema doses (MED) in total). Laser fluorescence spectroscopy (LFS), optical tissue oximetry (OTO), laser Doppler flowmetry (LDF), and optical coherence tomography (OCT) of the shaved dorsum skin were performed regularly, once per week until the conclusion of the study. At 0, 5, and 12 weeks of the experiment, histological examination of animal tissues using hematoxylin/eosin and Masson’s trichrome staining was performed. At the second stage, erythema was induced in mice (n = 15) by acute UV exposure at high doses. The colorimetric assay of the image from a digital RGB camera was used to evaluate the erythema index. Results: The tissue content index ηcollagen of collagen was appropriate for the characterization of skin photoaging. Significant differences (p < 0.05) in ηcollagen were found between the control and photoaging groups from the 5th to the 9th week of the experiment. In addition, the rate of collagen degradation in the control group was about half that of the photoaging group. This marker allows the differentiation of photo- and chronoaging. OCT revealed the main optical layers of the skin in compliance with the histological pattern. The analysis of the RGB camera images provided visualization of the acute skin reaction to UV radiation. Conclusions: This study demonstrates the applicability of optical methods for the quantitative assessment of acute and chronic skin effects of UV exposure in vivo.
Keloid scars, in contrast to other scar types, significantly reduce the patient's quality of life. To develop a nondestructive optical diagnostic technique predicting the keloid scars formation in vivo, laser-induced fluorescence spectroscopy (LFS) was used to study the autofluorescence in skin of patients with various types of head and neck cicatricial deformities. The unexpected results were obtained for the endogenous fluorescence of lipofuscin. Significantly reduced autofluorescence of lipofuscin was registered both in the intact and in the keloid scar tissues in comparison with the intact and scar tissues in patients with hypertrophic and normotrophic scars. Sensitivity and specificity achieved by LFS in keloid diagnosis are 81.8% and 93.9% respectively. It could take place due to the changes in the reductive-oxidative balance in cells, as well as due to the proteolysis processes violation. Therefore, we suppose that the evaluation of the lipofuscin autofluorescence in skin before any surgical intervention could predict the probability of the subsequent keloid scars formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.