The paper describes a unique method of heat flux measurement, i.e., gradient heatmetry. Gradient heatmetry is performed using gradient heat flux sensors (GHFS) developed on the anisotropic thermoelements basis. The principle of GHFS’ operation leads to the fact that their response time is about 10 ns, and the volt-watt sensitivity does not depend on the thickness. GHFS are compared with other types heat flux sensors, with the GHFS features depending on the materials being described. The theory and examples of gradient heatmetry applications in thermophysical experiment are provided.
All heat transfer processes from a solid body to a gas or a liquid are connected with flow characteristics in the vicinity of the streamlined body surface. As far as plenty of flow properties are changing rapidly, it is important to know both heat transfer and flow properties in a certain location and at a certain time. We present a new method of the simultaneous velocity field measurement and heatmetry. By “heatmetry” we mean science and practice of the heat flux measurement (by analogy with the thermometry). The velocity field was obtained by the particle image velocimetry and the local heat flux – by the gradient heat flux sensor. The advantage of the method was exemplified on the heat transfer from a circular cylinder in cross flow.
The flow and heat transfer of the finned cylinder are investigated by the methods of PIV, gradient heat flux measurement and thermometry. On the hollow model of a circular cylinder heated by saturated water vapor at atmospheric pressure, five annular fins of 20 mm high and of 10 mm thick are mounted. For the first model, the “acting” fin was hollow, for the second, it was solid and made of titanium alloy VT22. The remaining four fins simulated flow blockage. To visualize the flow in the intercostal space, the fin simulators were made of Perspex. Battery gradient heat flux sensors (GHFSs) with volt-watt sensitivity of 10 mV/W, were installed on the “acting” fin at different distances from the surface of the carrier cylinder. The cylinder rotated around its axis at an angle of φ = 0…180°, which made it possible to obtain the distribution of heat flux over the surface of the fin. By combining PIV diagnostics and gradient heat flux measurement, it was possible to obtain a complex 3D structure of the flow in the intercostal space and the distribution of heat flux on the surface of the fin. The values of the local heat transfer coefficients (HTCs) were also obtained. The dependence of HTC on flow mode and intercostal space is revealed. Comparison of the obtained characteristics for models with hollow and solid fins allowed us to determine in experiment fin efficiency for different intercostal spaces and free-stream velocities. The combination of all three technologies opens up new possibilities in study of flow and convective heat transfer.
Abstract. The heat transfer and the fluid flow behaviour at the surface of a circular cylinder with and without turbulizing rods, heated by saturated steam rectangular and circular fins were studied for different Reynolds numbers. The proposed approach of simultaneous use of gradient heat flux measurement and PIV method allowed us optimizing the geometry of the system with the rods and increasing heat transfer coefficient up to 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.