Abstract. The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on directapproach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-byelement approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Problems of the poroviscodynamics are considered. Theory of poroviscoelasticity is based on Biot’s equations of fluid saturated porous media under assumption that the skeleton is viscoelastic. Viscoelastic effects of solid skeleton are modeled by mean of elastic-viscoelastic correspondence principle, using such viscoelastic models as a standard linear solid model and model with weakly singular kernel. The fluid is taken as original in Biot’s formulation without viscoelastic effects. Boundary integral equations method is applied to solve three-dimensional boundary-value problems. Boundary-element method with mixed discretization and matched approximation of boundary functions is used. Solution is obtained in Laplace domain, and then Durbin’s algorithm of numerical inversion of Laplace transform is applied to perform solution in time domain. An influence of viscoelastic parameters on dynamic responses is studied. Numerical example of the surface waves modelling is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.