Simple explicit solutions of the linear wave equation in three dimensions are presented which describe wave packets exponentially localized near a point moving with the wave speed. For large values of a certain free parameter these new solutions are localized in Gaussian manner with respect to longitudinal and transverse variables and time. This agrees with considerations by Babich–Ulin and Ralston who have presented an asymptotic description of solutions exhibiting such local behavior. Global estimates and large-time asymptotics of these solutions are given.
Emerging brain-inspired computing needs phase-change materials of the next generation with lower energy consumption and wider temperature range. Gallium tellurides appear to be promising candidates enable to achieve the necessary requirements.
Just as uni-directional Rayleigh waves at the traction-free surface of a transversely isotropic elastic half-space and Stoneley waves at the interface between two such media may have arbitrary waveform and may be represented in terms of a single function harmonic in a half-plane, it is shown that surface-guided waves travelling simultaneously in all directions parallel to the surface may be represented, at each instant, in terms of a single function satisfying Laplace's equation in a three-dimensional half-space. That harmonic function is determined so that its normal derivative at the surface equals the normal displacement of the surface (or interface). It is shown, moreover, that the time evolution of that normal displacement may be any solution to the membrane equation with wave speed being equal to that of classical, uni-directional, time-harmonic Rayleigh or Stoneley waves. A similar representation is also shown to exist for Schölte waves at a fluid-solid interface, in the non-evanescent case. Thus, every surface-or interfaceguided disturbance in media having rotational symmetry about the surface normal is governed by the membrane equation with appropriate wave speed, provided that the combination of materials allows uni-directional, time-harmonic waves that are nonevanescent. Conversely, each solution to the membrane equation may be used to construct a representation of either a Rayleigh wave, a Stoneley wave or a (non-evanescent) Schölte wave. In each case, the disturbance at all depths may be represented at each instant in terms of a single function harmonic in a half-space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.