Context. The Sun’s activity can appear in terms of radio bursts. In the frequency range 8−33 MHz the radio telescope URAN-2 observed special fine structures appearing as a chain of stripes of enhanced radio emission in the dynamic radio spectrum. The chain drifts slowly from 26 to 23 MHz within 4 min. The individual structures consist of a “head” at the high-frequency edge and a “tail” rapidly drifting from the “head” to lower frequencies over an extent of ≈10 MHz within 8 s. Since they resemble the well-known “herring bones” in type II radio bursts, they are interpreted as shock accelerated electron beams. Aims. The electron beams generating these fine structures are considered to be produced by shock drift acceleration (SDA). The beam electrons excite Langmuir waves which are converted into radio waves by nonlinear wave-plasma processes. That is called plasma emission. The aim of this paper is to link the radio spectral data of these fine structures to the theoretical results in order to gain a better understanding of the generation of energetic electrons by shocks in the solar corona. Methods. Adopting SDA for generating energetic electrons, the accelerated electrons establish a beam-like velocity distribution. Plasma emission requires the excitation of Langmuir waves, which is efficient if the velocity of the beam electrons exceeds a few times thermal electron speed. That is the case if the angle between the shock normal and the upstream magnetic field is nearly perpendicular. Hence, the Rankine-Hugoniot relationships, which describe the shock transition in the framework of magnetohydrodynamics, are evaluated for the special case of nearly perpendicular shocks under coronal circumstances. Results. The radio data deduced from the dynamic radio spectrum can be related in the best way to the theoretical results, if the electron beams, which generate these fine structures, are generated via SDA at an almost perpendicular shock, which is traveling nearly horizontally to the surface of the Sun.
First-of-its-kind radio imaging of decameter solar stationary type IV radio burst has been presented in this paper. On 6 September 2014 the observations of type IV burst radio emission have been carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2) together with other telescope arrays. Starting at ∼09:55 UT and throughout ∼3 hours, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, "from birth to death". During the event lifetime, two Cclass solar X-ray flares with peak times 11:29 UT and 12:24 UT took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations we suggest the burst source was confined within a high coronal loop, which was a part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analyzing about 1.5 × 10 6 of heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels) the radio burst source imaging shows a fascinating dynamical evolution. Both space-based (GOES, SDO, SOHO, STEREO) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.
We report the systematic analysis of zebra-like fine spectral structures in decametric frequency range of Jovian radio emission. Observations were performed by the large ground-based radio telescope URAN-2 during three observation campaigns between, Sep., 2012, and May, 2015. In total, 51 zebra pattern (ZP) events were detected. These rare fine radio features are observed in frequency range from 12.5 to 29.7 MHz as quasi-harmonically related bands of enhanced brightness. ZPs are strongly polarized radio emission with a duration from 20 s to 290 s and flux densities ~105−106 Jy (normalized to 1 AU), that is, 1–2 orders lower than for Io-decametric radio emission (DAM). Occurrence of the events does not depend on the position of Io satellite but is strongly controlled by the Jovian central meridian longitude (CML). ZPs are mainly detected in two active sectors of Jovian CMLs: 100∘ to 160∘ for Northern sources (right-handed polarized) and 300∘ and 60∘ (via 360∘) for the Southern sources (left-handed). The frequency interval between neighboring stripes is from 0.26 to 1.5 MHz and in most cases this interval increases with frequency. We discussed the double plasma resonance with electrons or ions as a possible source of the ZPs. The performed analysis of the observations allows us to conclude that the observed ZPs are a new type of narrow band spectral structures in the Jovian DAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.