The book Introduction to Plasma Physics by Shukla and Mamun deals with various aspects of collective processes in dusty plasmas. The first introductory chapters review dust charging and the forces on dust grains in the plasma. The next two chapters give an elaborate description of the various waves and instabilities present in plasmas. In our opinion this makes the book a must for scientists involved in dusty plasma research as for the first time these phenomena are clearly explained and catalogued in a single work. Magnetic as well as non-magnetic plasmas are treated and where applicable examples from laboratory or space plasmas are given.The text is suitable for graduate level teaching as well as referencing purposes. The authors state in the preface: `This book has grown out of research work on topics on which the authors have spent a considerable amount of time and thought.' This explains the final chapters of the book, where `hot topics' on respectively elongated grains, non-linear waves and dust crystals are discussed. Since these chapters deal with state-of-the-art research, the results are inevitably not presented in a systematic way, but rather as a compilation of recent papers.Throughout the book the subject is treated using a theoretical approach. This makes it complementary to the book Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing edited by A Bouchoule which takes an applied approach. The research on dusty plasmas is a relatively new and rapidly expanding area of science. This book will serve as a handbook on waves and instabilities dusty plasmas in the coming years. But the character of the last chapters shows that more is to come in this exciting field of research.E Stoffels and W W Stoffels
It is found that a dusty plasma with inertial dust fluid and Boltzmann distributed ions admits only negative solitary potentials associated with nonlinear dust-acoustic waves. The dynamics of small-amplitude disturbances is governed by the Korteweg–de Vries (KdV) equation, the stationary solution of which assumes the inverted bell-shaped secant hyperbolic squared profile. The associated dust and ion density perturbations are, on the other hand, positive. The solitary potentials can be identified as nonlinear structures in low-temperature dusty plasmas such as those in laboratory and astrophysical environments.
The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg–de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study.
The properties of cylindrical and spherical dust ion–acoustic solitary waves (DIASWs) in an unmagnetized dusty plasma, whose constituents are inertial ions, Boltzmann electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The modified Korteweg–de Vries equation is derived and its numerical solutions are obtained. It has been found that the properties of the DIASWs in a nonplanar cylindrical or spherical geometry differ from those in a planar one-dimensional geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.