Gibbs energies for reactions involving aqueous ions are challenging to predict due to the large solvation energies of such ions. A stringent test would be the ab initio reproduction of the aqueous-phase chelate effect, an entropic effect in reactions of very small enthalpy changes. This paper examines what is required to achieve such a reproduction for the paradigmatic reaction M(NH3)42+ + 2 en → M( en)22+ + 4 NH3 ( en = 1,2-ethylenediamine), for which ΔrxnG* and ΔrxnH* are −2.3 and +1.6 kcal mol−1, respectively, if M = Zn. Explicit solvation via simulation was avoided in order to allow sufficiently accurate electronic structure models; this required the use of continuum solvation models (CSMs), and a great deal of effort was made in attempting to lower the relative errors of ΔsolvG*[M(NH3)42+] vs ΔsolvG*[M( en)22+] from the CSMs available in Gaussian software. CSMs in ADF and JDFTx software were also tested. A uniform 2.2 kcal mol−1 accuracy in ΔrxnG* for all three metal-atom choices M = {Zn, Cd, Hg} was eventually achieved, but not from any of the known CSMs tested, nor from cavity size reoptimization, nor from semicontinuum modeling: post facto solvation energy corrections [one per solute type, NH3, en, M(NH3)42+, M( en)22+] were needed. It is hoped that this study will aid (and encourage) further CSM development for coordination-complex ions.
Protic ionic liquids (PILs), made from anhydrous mixtures of Bronsted acids HA and bases B (HA + B → BH+ + A−), occasionally suffer from limited ionicity. In cases of “poor” PILs (<10% ionicity, e.g., using carboxylic acids), past simulations have hinted that ion-pair association, more than incomplete proton transfer, is at fault. To improve upon the Fuoss equation for predicting the degree of ion pairing, new electrostatic equations (including induced dipoles) are presented, for ion-pair and other associations that occur in anhydrous amine/carboxylic acid mixtures. The equations present the association Gibbs energies ΔGA (and thus the association constants KA) as functions of three fundamental properties: the acid/base mixing ratio (n = xA/xB), the HA-to-B proton-transfer strength (ΔpKa,ε=78), and the dielectric constant (relative permittivity) of the mixture (ε). Parameter values were obtained from fits to constant-dielectric quantum chemistry data (obtained and presented here). These ΔGA functions were then used to predict ΔGioniz values for the net ion-generating (autoionization) equilibrium in carboxylic acid/amine mixtures: [Formula: see text], where n = xA/xB and d = degree of disproportionation. The agreement with experiment was excellent, demonstrating that these equations could have useful predictive power.
Misconclusions are corrected on Raman peak assignment and gauche-vs.-trans conformer ratio of ethylenediamine in liquid and aqueous phases. Peaks lost upon aqueous dilution are due to lost NH⋯N interactions. Both conformers exist in both phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.